Degree-one convection and the origin of Εnceladus' dichotomy

[1]  Bryan J. Travis,et al.  Enceladus: Present internal structure and differentiation by early and long-term radiogenic heating , 2007 .

[2]  J. Wisdom,et al.  Tidal heating in Enceladus , 2007 .

[3]  Jonathan I. Lunine,et al.  Enceladus' plume: Compositional evidence for a hot interior , 2007 .

[4]  J. Castillo‐Rogez Internal Structure of Rhea , 2006 .

[5]  T. Spohn,et al.  Subsurface oceans and deep interiors of medium-sized outer planet satellites and large trans-neptunian objects , 2006 .

[6]  H. Hussmann,et al.  Conditions for the internal differentiation of Enceladus: Almost complete or still work in progress? , 2006 .

[7]  Ulrich Hansen,et al.  A new method to simulate convection with strongly temperature- and pressure-dependent viscosity in a spherical shell: Applications to the Earth's mantle , 2006 .

[8]  James H. Roberts,et al.  Degree-1 convection in the Martian mantle and the origin of the hemispheric dichotomy , 2006 .

[9]  R. Pappalardo,et al.  Diapir-induced reorientation of Saturn's moon Enceladus , 2006, Nature.

[10]  Sascha Kempf,et al.  Cassini Dust Measurements at Enceladus and Implications for the Origin of the E Ring , 2006, Science.

[11]  Rosaly M. C. Lopes,et al.  Cassini Encounters Enceladus: Background and the Discovery of a South Polar Hot Spot , 2006, Science.

[12]  G. Neukum,et al.  Cassini Observes the Active South Pole of Enceladus , 2006, Science.

[13]  R. A. Jacobson,et al.  Shapes of the Saturnian Icy Satellites , 2006 .

[14]  A. Kageyama,et al.  Low‐degree mantle convection with strongly temperature‐ and depth‐dependent viscosity in a three‐dimensional spherical shell , 2005, physics/0512180.

[15]  L. Czechowski,et al.  Convection driven by tidal and radiogenic heating in medium size icy satellites , 2005 .

[16]  S. Zhong,et al.  Degree‐one mantle convection: Dependence on internal heating and temperature‐dependent rheology , 2005 .

[17]  T. Spohn,et al.  A model for the interior structure, evolution, and differentiation of Callisto , 2003 .

[18]  Tilman Spohn,et al.  Oceans in the icy Galilean satellites of Jupiter , 2002 .

[19]  David L. Goldsby,et al.  Superplastic deformation of ice: Experimental observations , 2001 .

[20]  M. Zuber,et al.  A dynamic origin for the global asymmetry of lunar mare basalts , 2000 .

[21]  M. Zuber,et al.  Degree-1 mantle convection and the crustal dichotomy on Mars , 2000 .

[22]  Stephen H. Kirby,et al.  Erratum: ``Creep of water ices at planetary conditions: A compilation'' , 1997 .

[23]  G. Consolmagno,et al.  THE AMMONIA-WATER SYSTEM AND THE CHEMICAL DIFFERENTIATION OF ICY SATELLITES , 1997 .

[24]  M. Arakawa,et al.  Effective viscosity of partially melted ice in the ammonia-water system , 1994 .

[25]  W. Durham,et al.  Flow of ices in the ammonia‐water system , 1993 .

[26]  M. Rudman Two-phase natural convection: implications for crystal settling in magma chambers , 1992 .

[27]  M. Ross,et al.  Viscoelastic models of tidal heating in Enceladus , 1989 .

[28]  D. Stevenson,et al.  Viscosity of rock-ice mixtures and applications to the evolution of icy satellites☆ , 1983 .

[29]  J. Poirier,et al.  Tidal dissipation in small viscoelastic ice moons: The case of Enceladus , 1983 .

[30]  G. Schubert,et al.  Saturn's icy satellites - Thermal and structural models , 1983 .

[31]  S. Squyres,et al.  The evolution of Enceladus , 1983 .

[32]  J. L. Mitchell,et al.  A New Look at the Saturn System: The Voyager 2 Images , 1982, Science.

[33]  W. Kuhs Physics and Chemistry of Ice , 2007 .

[34]  M. Grott,et al.  Tidal Heating in Enceladus and Mimas: Implications for their Thermal and Orbital States , 2006 .

[35]  H. Hussmann,et al.  Interior Structures of Enceladus and Mimas: Implications from Their Densities and Equilibrium Shapes , 2006 .

[36]  C. Sotin,et al.  Thermodynamic Properties of High Pressure Ices: Implications for the Dynamics and Internal Structure of Large Icy Satellites , 1998 .