Mathematical Analysis of Partial Differential Equations Modeling Electrostatic MEMS

Micro- and nanoelectromechanical systems (MEMS and NEMS), which combine electronics with miniature-size mechanical devices, are essential components of modern technology. It is the mathematical model describing 'electrostatically actuated' MEMS that is addressed in this monograph. Even the simplified models that the authors deal with still lead to very interesting second- and fourth-order nonlinear elliptic equations (in the stationary case) and to nonlinear parabolic equations (in the dynamic case). While nonlinear eigenvalue problems - where the stationary MEMS models fit - are a well-developed field of PDEs, the type of inverse square nonlinearity that appears here helps shed a new light on the class of singular supercritical problems and their specific challenges. Besides the practical considerations, the model is a rich source of interesting mathematical phenomena. Numerics, formal asymptotic analysis, and ODE methods give lots of information and point to many conjectures. However, even in the simplest idealized versions of electrostatic MEMS, one essentially needs the full available arsenal of modern PDE techniques to do the required rigorous mathematical analysis, which is the main objective of this volume. This monograph could therefore be used as an advanced graduate text for a motivational introduction to many recent methods of nonlinear analysis and PDEs through the analysis of a set of equations that have enormous practical significance.

[1]  J. Pelesko,et al.  Nonlocal problems in MEMS device control , 2001 .

[2]  Basilis Gidas,et al.  Global and local behavior of positive solutions of nonlinear elliptic equations , 1981 .

[3]  Basilis Gidas,et al.  Asymptotic symmetry and local behavior of semilinear elliptic equations with critical sobolev growth , 1989 .

[4]  N. Ghoussoub,et al.  Uniqueness of Solutions for an Elliptic Equation Modeling MEMS , 2008, 0810.1257.

[5]  D. Joseph,et al.  Quasilinear Dirichlet problems driven by positive sources , 1973 .

[6]  Randolph E. Bank,et al.  PLTMG - a software package for solving elliptic partial differential equations: users' guide 8.0 , 1998, Software, environments, tools.

[7]  Juan Dávila,et al.  Stable Solutions for the Bilaplacian with Exponential Nonlinearity , 2007, SIAM J. Math. Anal..

[8]  L. Peletier,et al.  A very singular solution of the heat equation with absorption , 1986 .

[9]  Zongming Guo,et al.  Hausdorff Dimension of Ruptures for Solutions of a Semilinear Elliptic Equation with Singular Nonlinearity , 2006 .

[10]  Concavity of solutions of nonlinear ordinary differential equations , 1988 .

[11]  Hwang,et al.  A Nonlinear Three-Dimensional Rupture Theory of Thin Liquid Films , 1997, Journal of colloid and interface science.

[12]  Victor A. Galaktionov,et al.  Rate of Approach to a Singular Steady State in Quasilinear Reaction-Diffusion Equations , 1998 .

[13]  V. Galaktionov,et al.  Stabilization to a singular steady state for the Frank-Kamenetskii equation in a critical dimension , 2005, Proceedings of the Royal Society of Edinburgh: Section A Mathematics.

[14]  Alan E. Lindsay,et al.  Asymptotics of Some Nonlinear Eigenvalue Problems for a MEMS Capacitor: Part I: Fold Point Asymptotics , 2008 .

[15]  Zhengping Wang,et al.  On a class of semilinear elliptic problems with singular nonlinearities , 2007, Appl. Math. Comput..

[16]  Yoshikazu Giga,et al.  Characterizing Blow-up Using Similarity Variables , 1985 .

[17]  B. Gidas,et al.  Symmetry and related properties via the maximum principle , 1979 .

[18]  C. M. Place,et al.  Ordinary Differential Equations , 1982 .

[19]  K. M. Hui Global and touchdown behaviour of the generalized MEMS device equation , 2008, 0808.0110.

[20]  Guido Sweers,et al.  Positivity properties of elliptic boundary value problems of higher order , 1997 .

[21]  G. M.,et al.  Partial Differential Equations I , 2023, Applied Mathematical Sciences.

[22]  A. Friedman,et al.  Blow-up of positive solutions of semilinear heat equations , 1985 .

[23]  R. D. Richtmyer,et al.  Principles of Advanced Mathematical Physics , 1978 .

[24]  S. F.R.,et al.  The coalescence of closely spaced drops when they are at different electric potentials , 1968 .

[25]  S. Agmon,et al.  Estimates near the boundary for solutions of elliptic partial differential equations satisfying general boundary conditions. I , 1959 .

[26]  J. García Azorero,et al.  Hardy Inequalities and Some Critical Elliptic and Parabolic Problems , 1998 .

[27]  Jerrold Bebernes,et al.  Mathematical Problems from Combustion Theory , 1989 .

[28]  P. Lions,et al.  Morse index of some min-max critical points , 1988 .

[29]  R. Feynman There’s plenty of room at the bottom , 2011 .

[30]  Kung-Ching Chang,et al.  ON NIRENBERG'S PROBLEM , 1993 .

[31]  Zongming Guo,et al.  Positive solutions of a semilinear elliptic equation with singular nonlinearity , 2006 .

[32]  J. Pelesko,et al.  Modeling MEMS and NEMS , 2002 .

[33]  Haim Brezis,et al.  Combined Effects of Concave and Convex Nonlinearities in Some Elliptic Problems , 1994 .

[34]  Ali H. Nayfeh,et al.  Static and Dynamic Behavior of an Electrically Excited Resonant Microbeam , 2002 .

[35]  Ramón Costa Castelló,et al.  Modelling the electrostatic actuation of MEMS: state of the art 2005. , 2005 .

[36]  Haim Brezis,et al.  Blow up for $u_t-\Delta u=g(u)$ revisited , 1996, Advances in Differential Equations.

[37]  Jong-Shenq Guo On the quenching behavior of the solution of a semilinear parabolic equation , 1990 .

[38]  W. Gruyter Radial symmetry of positive solutions to nonlinear polyharmonic Dirichlet problems , 2008 .

[39]  R. Schaaf Uniqueness for semilinear elliptic problems: supercritical growth and domain geometry , 2000, Advances in Differential Equations.

[40]  W. Troy Symmetry properties in systems of semilinear elliptic equations , 1981 .

[41]  P. Rabinowitz Minimax methods in critical point theory with applications to differential equations , 1986 .

[42]  G. Nedev Regularity of the extremal solution of semilinear elliptic equations , 2000 .

[43]  A. Lacey Mathematical Analysis of Thermal Runaway for Spatially Inhomogeneous Reactions , 1983 .

[44]  The blow-up problem for a semilinear parabolic equation with a potential , 2006, math/0607055.

[45]  P Baras,et al.  Complete blow-up after Tmax for the solution of a semilinear heat equation , 1987 .

[46]  N. Kavallaris,et al.  Touchdown and related problems in electrostatic MEMS device equation , 2008 .

[47]  Adimurthi,et al.  Role of the fundamental solution in Hardy—Sobolev-type inequalities , 2006, Proceedings of the Royal Society of Edinburgh: Section A Mathematics.

[48]  James P. Keener,et al.  Positive solutions of convex nonlinear eigenvalue problems , 1974 .

[49]  Guillaume Warnault,et al.  On solutions of second and fourth order elliptic equations with power-type nonlinearities , 2009 .

[50]  Alberto Farina,et al.  On the classification of solutions of the Lane-Emden equation on unbounded domains of Rn , 2007 .

[51]  J. Vázquez,et al.  On the stability or instability of the singular solution of the semilinear heat equation with exponential reaction term , 1995 .

[52]  J. Keller,et al.  Asymptotic and Numerical Results for Blowing-Up Solutions to Semilinear Heat Equations , 1993 .

[53]  H. Bellout A criterion for blow-up of solutions to semilinear heat equations , 1987 .

[54]  D. A. Dunnett Classical Electrodynamics , 2020, Nature.

[55]  Haim Brezis,et al.  Uniform estimates and blow–up behavior for solutions of −δ(u)=v(x)eu in two dimensions , 1991 .

[56]  Y. Giga On elliptic equations related to self-similar solutions for nonlinear heat equations , 1986 .

[57]  Emmanuel Hebey,et al.  Blow-up Theory for Elliptic PDEs in Riemannian Geometry , 2004 .

[58]  S. Alama,et al.  Elliptic problems with nonlinearities indefinite in sign , 1996 .

[59]  S. G. Bankoff,et al.  Nonlinear stability of evaporating/condensing liquid films , 1988, Journal of Fluid Mechanics.

[60]  N. Ghoussoub,et al.  Bessel pairs and optimal Hardy and Hardy–Rellich inequalities , 2011 .

[61]  Juncheng Wei,et al.  Properties of positive solutions of an Elliptic Equation with negative exponents , 2007, 0706.2034.

[62]  Michael G. Crandall,et al.  Some continuation and variational methods for positive solutions of nonlinear elliptic eigenvalue problems , 1975 .

[63]  ALI H. NAYFEH,et al.  Reduced-Order Models for MEMS Applications , 2005 .

[64]  Ali H. Nayfeh,et al.  Characterization of the mechanical behavior of an electrically actuated microbeam , 2002 .

[65]  E. N. Dancer Finite Morse index solutions of exponential problems , 2008 .

[66]  P. Lions,et al.  Solutions of superlinear elliptic equations and their morse indices , 1992 .

[67]  Richard S. Laugesen,et al.  Linear Stability of Steady States for Thin Film and Cahn-Hilliard Type Equations , 2000 .

[68]  J. Seeger,et al.  Stabilization of electrostatically actuated mechanical devices , 1997, Proceedings of International Solid State Sensors and Actuators Conference (Transducers '97).

[69]  Haim Brezis,et al.  Blow-up solutions of some nonlinear elliptic problems , 1997 .

[70]  Guido Sweers,et al.  No Gidas–Ni–Nirenberg Type Result for Semilinear Biharmonic Problems , 2002 .

[71]  John A. Pelesko,et al.  Dynamics and touchdown in electrostatic MEMS , 2003, Proceedings International Conference on MEMS, NANO and Smart Systems.

[72]  P. Esposito COMPACTNESS OF A NONLINEAR EIGENVALUE PROBLEM WITH A SINGULAR NONLINEARITY , 2008 .

[73]  M. S. Berger,et al.  Infinite Dimensional Morse Theory and Multiple Solution Problems (K. C. Chang) , 1994, SIAM Rev..

[74]  E. N. Dancer,et al.  The Sub-Harmonic Bifurcation of Stokes Waves , 2000 .

[75]  H. Berestycki,et al.  The explosion problem in a flow , 2009, 0907.5230.

[76]  D. Ye,et al.  BOUNDEDNESS OF THE EXTREMAL SOLUTION FOR SEMILINEAR ELLIPTIC PROBLEMS , 2002 .

[77]  J. Webb,et al.  Large and Small Solutions of a Class of Quasilinear Elliptic Eigenvalue Problems , 2002 .

[78]  Mary C. Pugh,et al.  Long-wave instabilities and saturation in thin film equations , 1998 .

[79]  Patrizia Pucci,et al.  A general variational identity , 1986 .

[80]  Tommaso Boggio,et al.  Sulle funzioni di green d’ordinem , 1905 .

[81]  I. Stakgold Green's Functions and Boundary Value Problems , 1979 .

[82]  John A. Pelesko,et al.  Mathematical Modeling of Electrostatic MEMS with Tailored Dielectric Properties , 2002, SIAM J. Appl. Math..

[83]  The Quenching Problem on the N-dimensional Ball , 1992 .

[84]  P. Rabinowitz,et al.  Dual variational methods in critical point theory and applications , 1973 .

[85]  Gianni Arioli,et al.  A Semilinear Fourth Order Elliptic Problem with Exponential Nonlinearity , 2005, SIAM J. Math. Anal..

[86]  Robert V. Kohn,et al.  Refined asymptotics for the blowup of ut –Δu = up , 1992 .

[87]  Yujin Guo Global solutions of singular parabolic equations arising from electrostatic MEMS , 2008 .

[88]  C. Cowan Hardy inequalities for general elliptic operators with improvements , 2008, 0805.0610.

[89]  P. Esposito,et al.  p-MEMS equation on a ball , 2008 .

[90]  Peng Feng,et al.  MULTIPLICITY AND SYMMETRY BREAKING FOR POSITIVE RADIAL SOLUTIONS OF SEMILINEAR ELLIPTIC EQUATIONS MODELLING MEMS ON ANNULAR DOMAINS , 2005 .

[91]  A. P. Mikhailov,et al.  Blow-Up in Quasilinear Parabolic Equations , 1995 .

[92]  S. Luckhaus Existence and regularity of weak solutions to the Dirichletproblem for semilinear elliptic systems of higher order. , 1979 .

[93]  M. Brereton Classical Electrodynamics (2nd edn) , 1976 .

[94]  H. Brezis,et al.  H1 versus C1 local minimizers , 1993 .

[95]  E. N. Dancer,et al.  Infinitely many turning points for some supercritical problems , 2000 .

[96]  Y. Giga,et al.  Asymptotically self‐similar blow‐up of semilinear heat equations , 1985 .

[97]  M. Solomjak,et al.  Spectral theory of selfadjoint operators in Hilbert space , 1987 .

[98]  Michael G. Crandall,et al.  Bifurcation, perturbation of simple eigenvalues, itand linearized stability , 1973 .

[99]  P. Bassanini,et al.  Elliptic Partial Differential Equations of Second Order , 1997 .

[100]  Changfeng Gui,et al.  Regularity of an elliptic problem with a singular nonlinearity , 1993, Proceedings of the Royal Society of Edinburgh: Section A Mathematics.

[101]  Stable and singular solutions of the equation $\Delta u = 1/u$ , 2004, math/0404422.

[102]  Zheng-chao Han Asymptotic approach to singular solutions for nonlinear elliptic equations involving critical Sobolev exponent , 1991 .

[103]  Yisong Yang,et al.  Nonlinear non-local elliptic equation modelling electrostatic actuation , 2007, Proceedings of the Royal Society A: Mathematical, Physical and Engineering Sciences.

[104]  C. Bandle Isoperimetric inequalities and applications , 1980 .

[105]  Xavier Cabré Vilagut Extremal solutions and instantaneous complete blow-up for elliptic and parabolic problems , 2005 .

[106]  Xavier Cabré,et al.  Weak Eigenfunctions for the Linearization of Extremal Elliptic Problems , 1998 .

[107]  J. Prajapat,et al.  On a class of elliptic problems in R2: symmetry and uniqueness results , 2001, Proceedings of the Royal Society of Edinburgh: Section A Mathematics.

[108]  John A. Pelesko,et al.  Analysis of the Dynamics and Touchdown in a Model of Electrostatic MEMS , 2007, SIAM J. Appl. Math..

[109]  M. Fila,et al.  A note on the quenching rate , 1991 .

[110]  Wenxiong Chen,et al.  Classification of solutions of some nonlinear elliptic equations , 1991 .

[111]  Yujin Guo,et al.  On the partial differential equations of electrostatic MEMS devices II: Dynamic case , 2008 .

[112]  N. Ghoussoub,et al.  The Critical Dimension for a Fourth Order Elliptic Problem with Singular Nonlinearity , 2008, 0904.2414.

[113]  Y. Rébaï Solutions of semilinear elliptic equations with one isolated singularity , 1999, Differential and Integral Equations.

[114]  L. Simon Asymptotics for a class of non-linear evolution equations, with applications to geometric problems , 1983 .

[115]  S. Alama,et al.  On the solvability of a semilinear elliptic equation via an associated eigenvalue problem , 1996 .

[116]  Fulbert Mignot,et al.  Sur une classe de problemes non lineaires avec non linearite positive, croissante, convexe. , 1980 .

[117]  E. Berchio,et al.  Positivity preserving property for a class of biharmonic elliptic problems , 2006 .

[118]  F. Lin,et al.  Elliptic Partial Differential Equations , 2000 .

[119]  N. Ghoussoub,et al.  Regularity of the extremal solution in a MEMS model with advection , 2008, 0810.1266.

[120]  U. Ascher,et al.  A collocation solver for mixed order systems of boundary value problems , 1979 .

[121]  O. Ladyženskaja Linear and Quasilinear Equations of Parabolic Type , 1968 .

[122]  Juncheng Wei,et al.  Self-similar solutions for the anisotropic affine curve shortening problem , 2001 .

[123]  A decomposition method with respect to dual cones and its application to higher order Sobolev spaces , 2006 .

[124]  F. Lin,et al.  ZERO SET OF SOBOLEV FUNCTIONS WITH NEGATIVE POWER OF INTEGRABILITY , 2004 .

[125]  Yujin Guo,et al.  On the Partial Differential Equations of Electrostatic MEMS Devices: Stationary Case , 2006, SIAM J. Math. Anal..

[126]  Michael J. Ward,et al.  Touchdown and Pull-In Voltage Behavior of a MEMS Device with Varying Dielectric Properties , 2005, SIAM J. Appl. Math..

[127]  Yoshikazu Giga,et al.  Nondegeneracy of blowup for semilinear heat equations , 1989 .

[128]  J. Sacks,et al.  The Existence of Minimal Immersions of 2-Spheres , 1981 .

[129]  Jesús Ildefonso Díaz Díaz,et al.  An elliptic equation with singular nonlinearity , 1987 .

[130]  X. Cabré,et al.  Regularity of radial minimizers and extremal solutions of semilinear elliptic equations , 2006 .

[131]  F. Gazzola,et al.  SOME REMARKS ON THE EQUATION FOR VARYING λ, p AND VARYING DOMAINS* , 2002 .

[132]  Robert W. Dutton,et al.  Effects of capacitors, resistors, and residual charges on the static and dynamic performance of electrostatically actuated devices , 1999, Design, Test, Integration, and Packaging of MEMS/MOEMS.

[133]  John A. Pelesko,et al.  Mathematical Analysis of Electrostatically Actuated MEMS Devices , 2000 .

[134]  Michael Struwe,et al.  Variational methods: Applications to nonlinear partial differential equations and Hamiltonian systems , 1990 .

[135]  Yujin Guo,et al.  Compactness along the branch of semistable and unstable solutions for an elliptic problem with a singular nonlinearity , 2005 .

[136]  X. Cabré,et al.  On the stability of radial solutions of semilinear elliptic equations in all of Rn , 2004 .

[137]  Amir Moradifam On the critical dimension of a fourth order elliptic problem with negative exponent , 2009, 0905.1940.

[138]  Xiaodong Wang,et al.  A new approach to some nonlinear geometric equations in dimension two , 2006 .

[139]  N. Ghoussoub,et al.  On a Fourth Order Elliptic Problem with a Singular Nonlinearity , 2009 .

[140]  Howard A. Levine,et al.  Quenching, nonquenching, and beyond quenching for solution of some parabolic equations , 1989 .

[141]  Nassif Ghoussoub,et al.  Duality and Perturbation Methods in Critical Point Theory , 1993 .

[142]  B. Nicolaenko,et al.  On nonlinear eigenvalue problems which extend into free boundaries problems , 1980 .

[143]  H. Nathanson,et al.  The resonant gate transistor , 1967 .

[144]  Zongming Guo,et al.  On the Cauchy problem for a reaction–diffusion equation with a singular nonlinearity , 2007 .