Development of optimization methods to solve computationally expensive problems

Evolutionary algorithms (EAs) are population based heuristic optimization methods used to solve single and multi-objective optimization problems. They can simultaneously search multiple regions to find global optimum solutions. As EAs do not require gradient information for the search, they can be applied to optimization problems involving functions of real, integer, or discrete variables. One of the drawbacks of EAs is that they require evaluations of numerous candidate solutions for convergence. Most real life engineering design optimization problems involve highly nonlinear objective and constraint functions arising out of computationally expensive simulations. For such problems, the computation cost of optimization using EAs can become quite prohibitive. This has stimulated the research into improving the efficiency of EAs reported herein. In this thesis, two major improvements are suggested for EAs. The first improvement is the use of spatial surrogate models to replace the expensive simulations for the evaluation of candidate solutions, and other is a novel constraint handling technique. These modifications to EAs are tested on a number of numerical benchmarks and engineering examples using a fixed number of evaluations and the results are compared with basic EA. addition, the spatial surrogates are used in the truss design application. A generic framework for using spatial surrogate modeling, is proposed. Multiple types of surrogate models are used for better approximation performance and a prediction accuracy based validation is used to ensure that the approximations do not misguide the evolutionary search. Two EAs are proposed using spatial surrogate models for evaluation and evolution. For numerical benchmarks, the spatial surrogate assisted EAs obtain significantly better (even orders of magnitude better) results than EA and on an average 5–20% improvements in the

[1]  T. Simpson,et al.  Efficient Pareto Frontier Exploration using Surrogate Approximations , 2000 .

[2]  R. Haftka,et al.  Ensemble of surrogates , 2007 .

[3]  Donald R. Jones,et al.  Efficient Global Optimization of Expensive Black-Box Functions , 1998, J. Glob. Optim..

[4]  H. Madsen,et al.  A fast Evolutionary-based Meta-Modelling Approach for the Calibration of a Rainfall-Runoff Model , 2004 .

[5]  Margaret J. Robertson,et al.  Design and Analysis of Experiments , 2006, Handbook of statistics.

[6]  Kalyanmoy Deb,et al.  A fast and elitist multiobjective genetic algorithm: NSGA-II , 2002, IEEE Trans. Evol. Comput..

[7]  A. Keane,et al.  Evolutionary Optimization of Computationally Expensive Problems via Surrogate Modeling , 2003 .

[8]  Zbigniew Michalewicz,et al.  Evolutionary Computation at the Edge of Feasibility , 1996, PPSN.

[9]  Zong Woo Geem,et al.  A New Heuristic Optimization Algorithm: Harmony Search , 2001, Simul..

[10]  Patrick D. Surry,et al.  The COMOGA Method: Constrained Optimisation by Multi-Objective Genetic Algorithms , 1997 .

[11]  W. Gutkowski,et al.  An effective method for discrete structural optimization , 2000 .

[12]  R. Reynolds AN INTRODUCTION TO CULTURAL ALGORITHMS , 2008 .

[13]  A. Giotis,et al.  LOW-COST STOCHASTIC OPTIMIZATION FOR ENGINEERING APPLICATIONS , 2002 .

[14]  Yoel Tenne,et al.  A framework for memetic optimization using variable global and local surrogate models , 2009, Soft Comput..

[15]  A. Kaveh,et al.  Simultaneous topology and size optimization of structures by genetic algorithm using minimal length chromosome , 2006 .

[16]  A. Ratle Optimal sampling strategies for learning a fitness model , 1999, Proceedings of the 1999 Congress on Evolutionary Computation-CEC99 (Cat. No. 99TH8406).

[17]  Frank Hoffmeister,et al.  Problem-Independent Handling of Constraints by Use of Metric Penalty Functions , 1996, Evolutionary Programming.

[18]  Zbigniew Michalewicz,et al.  Evolutionary Planner/Navigator: operator performance and self-tuning , 1996, Proceedings of IEEE International Conference on Evolutionary Computation.

[19]  Zbigniew Michalewicz,et al.  Evolutionary optimization of constrained problems , 1994 .

[20]  Wan-Chi Siu,et al.  A study of the Lamarckian evolution of recurrent neural networks , 2000, IEEE Trans. Evol. Comput..

[21]  Leo Breiman,et al.  Bagging Predictors , 1996, Machine Learning.

[22]  Fred W. Glover,et al.  Tabu Search , 1997, Handbook of Heuristics.

[23]  W. Carpenter,et al.  A comparison of polynomial approximations and artificial neural nets as response surfaces , 1993 .

[24]  Lawrence. Davis,et al.  Handbook Of Genetic Algorithms , 1990 .

[25]  Sana Ben Hamida,et al.  An Adaptive Algorithm for Constrained Optimization Problems , 2000, PPSN.

[26]  Shapour Azarm,et al.  A Kriging Metamodel Assisted Multi-Objective Genetic Algorithm for Design Optimization , 2008, DAC 2006.

[27]  Yaochu Jin,et al.  Managing approximate models in evolutionary aerodynamic design optimization , 2001, Proceedings of the 2001 Congress on Evolutionary Computation (IEEE Cat. No.01TH8546).

[28]  Atsuko Mutoh,et al.  Reducing execution time on genetic algorithm in real-world applications using fitness prediction: parameter optimization of SRM control , 2003, The 2003 Congress on Evolutionary Computation, 2003. CEC '03..

[29]  X. Yao Evolutionary Search of Approximated N-dimensional Landscapes , 2000 .

[30]  Kalyanmoy Deb,et al.  Messy Genetic Algorithms: Motivation, Analysis, and First Results , 1989, Complex Syst..

[31]  Larry Bull,et al.  On Model-Based Evolutionary Computation , 1999, Soft Comput..

[32]  Tapabrata Ray,et al.  Surrogate Assisted Evolutionary Algorithm for Multiobjective Optimization , 2006 .

[33]  Bernhard Sendhoff,et al.  A framework for evolutionary optimization with approximate fitness functions , 2002, IEEE Trans. Evol. Comput..

[34]  Ali Kaveh,et al.  Topology optimization of trusses using genetic algorithm, force method and graph theory , 2003 .

[35]  C. Reeves Modern heuristic techniques for combinatorial problems , 1993 .

[36]  Alain Ratle,et al.  Kriging as a surrogate fitness landscape in evolutionary optimization , 2001, Artificial Intelligence for Engineering Design, Analysis and Manufacturing.

[37]  J. MacQueen Some methods for classification and analysis of multivariate observations , 1967 .

[38]  Lothar Thiele,et al.  Comparison of Multiobjective Evolutionary Algorithms: Empirical Results , 2000, Evolutionary Computation.

[39]  Lawrence J. Fogel,et al.  Artificial Intelligence through Simulated Evolution , 1966 .

[40]  Andy J. Keane,et al.  Combining Global and Local Surrogate Models to Accelerate Evolutionary Optimization , 2007, IEEE Transactions on Systems, Man, and Cybernetics, Part C (Applications and Reviews).

[41]  Kalyanmoy Deb,et al.  A combined genetic adaptive search (GeneAS) for engineering design , 1996 .

[42]  Meng-Sing Liou,et al.  Multi-Objective Optimization of Transonic Compressor Blade Using Evolutionary Algorithm , 2005 .

[43]  Bernhard Sendhoff,et al.  A study on metamodeling techniques, ensembles, and multi-surrogates in evolutionary computation , 2007, GECCO '07.

[44]  Yaochu Jin,et al.  A comprehensive survey of fitness approximation in evolutionary computation , 2005, Soft Comput..

[45]  Daisuke Sasaki,et al.  Multiobjective evolutionary computation for supersonic wing-shape optimization , 2000, IEEE Trans. Evol. Comput..

[46]  Yew-Soon Ong,et al.  Curse and Blessing of Uncertainty in Evolutionary Algorithm Using Approximation , 2006, 2006 IEEE International Conference on Evolutionary Computation.

[47]  Pasi Tanskanen,et al.  A multiobjective and fixed elements based modification of the evolutionary structural optimization method , 2006 .

[48]  Layne T. Watson,et al.  Improved Genetic Algorithm for the Design of Stiffened Composite Panels , 1994 .

[49]  Kai-Yew Lum,et al.  Max-min surrogate-assisted evolutionary algorithm for robust design , 2006, IEEE Transactions on Evolutionary Computation.

[50]  Gregory S. Hornby,et al.  Automated Antenna Design with Evolutionary Algorithms , 2006 .

[51]  Gabriel Winter,et al.  Evolutionary Algorithms And Intelligent Tools In Engineering Optimization , 2005 .

[52]  Bernhard Sendhoff,et al.  On Evolutionary Optimization with Approximate Fitness Functions , 2000, GECCO.

[53]  Robert Hooke,et al.  `` Direct Search'' Solution of Numerical and Statistical Problems , 1961, JACM.

[54]  Douglas A. G. Vieira,et al.  Handling constraints as objectives in a multiobjective genetic based algorithm , 2002 .

[55]  Jan Golinski,et al.  Optimal synthesis problems solved by means of nonlinear programming and random methods , 1970 .

[56]  Ujjwal Maulik,et al.  A Simulated Annealing-Based Multiobjective Optimization Algorithm: AMOSA , 2008, IEEE Transactions on Evolutionary Computation.

[57]  Z. Michalewicz Genetic Algorithms , Numerical Optimization , and Constraints , 1995 .

[58]  Carlos A. Coello Coello,et al.  A simple multimembered evolution strategy to solve constrained optimization problems , 2005, IEEE Transactions on Evolutionary Computation.

[59]  Carlos Artemio Coello-Coello,et al.  Theoretical and numerical constraint-handling techniques used with evolutionary algorithms: a survey of the state of the art , 2002 .

[60]  Haym Hirsh,et al.  Informed operators: Speeding up genetic-algorithm-based design optimization using reduced models , 2000, GECCO.

[61]  Yoel Tenne,et al.  Metamodel accuracy assessment in evolutionary optimization , 2008, 2008 IEEE Congress on Evolutionary Computation (IEEE World Congress on Computational Intelligence).

[62]  Hussein A. Abbass,et al.  Pareto neuro-evolution: constructing ensemble of neural networks using multi-objective optimization , 2003, The 2003 Congress on Evolutionary Computation, 2003. CEC '03..

[63]  David E. Goldberg,et al.  Genetic Algorithms in Search Optimization and Machine Learning , 1988 .

[64]  Kazuhiro Saitou,et al.  DETC 2005-84965 VEHICLE CRASHWORTHINESS DESIGN VIA A SURROGATE MODEL ENSEMBLE AND A COEVOLUTIONARY GENETIC ALGORITHM , 2005 .

[65]  David E. Goldberg,et al.  Fitness Inheritance In Multi-objective Optimization , 2002, GECCO.

[66]  A. Jameson,et al.  Numerical solution of the Euler equations by finite volume methods using Runge Kutta time stepping schemes , 1981 .

[67]  Chun-Gon Kim,et al.  Minimum-weight design of compressively loaded composite plates and stiffened panels for postbuckling strength by Genetic Algorithm , 2003 .

[68]  K. Deb An Efficient Constraint Handling Method for Genetic Algorithms , 2000 .

[69]  Zafer Gürdal,et al.  Combined Structural and Manufacturing Optimization of Stiffened Composite Panels , 1996 .

[70]  Pablo Moscato,et al.  Memetic Algorithms , 2007, Handbook of Approximation Algorithms and Metaheuristics.

[71]  Kazuhiro Nakahashi,et al.  Aerodynamic Shape Optimization of Supersonic Wings by Adaptive Range Multiobjective Genetic Algorithms , 2001, EMO.

[72]  Edmondo A. Minisci,et al.  Multi-objective evolutionary optimization of subsonic airfoils by kriging approximation and evolution control , 2005, 2005 IEEE Congress on Evolutionary Computation.

[73]  Zbigniew Michalewicz,et al.  Adaptive evolutionary planner/navigator for mobile robots , 1997, IEEE Trans. Evol. Comput..

[74]  Yi Min Xie,et al.  On various aspects of evolutionary structural optimization for problems with stiffness constraints , 1997 .

[75]  James C. Bean,et al.  A Genetic Algorithm for the Multiple-Choice Integer Program , 1997, Oper. Res..

[76]  X. Yao,et al.  Combining landscape approximation and local search in global optimization , 1999, Proceedings of the 1999 Congress on Evolutionary Computation-CEC99 (Cat. No. 99TH8406).

[77]  Andreas Zell,et al.  Evolution strategies assisted by Gaussian processes with improved preselection criterion , 2003, The 2003 Congress on Evolutionary Computation, 2003. CEC '03..

[78]  Kyriakos C. Giannakoglou,et al.  Design of optimal aerodynamic shapes using stochastic optimization methods and computational intelligence , 2002 .

[79]  Andy J. Keane,et al.  Metamodeling Techniques For Evolutionary Optimization of Computationally Expensive Problems: Promises and Limitations , 1999, GECCO.

[80]  Manolis Papadrakakis,et al.  Structural optimization using evolution strategies and neural networks , 1998 .

[81]  E. Hinton,et al.  Optimization of trusses using genetic algorithms for discrete and continuous variables , 1999 .

[82]  Yew-Soon Ong,et al.  Hierarchical surrogate-assisted evolutionary optimization framework , 2004, Proceedings of the 2004 Congress on Evolutionary Computation (IEEE Cat. No.04TH8753).

[83]  Christopher R. Houck,et al.  On the use of non-stationary penalty functions to solve nonlinear constrained optimization problems with GA's , 1994, Proceedings of the First IEEE Conference on Evolutionary Computation. IEEE World Congress on Computational Intelligence.

[84]  Ángel Fernando Kuri Morales,et al.  A UNIVERSAL ECLECTIC GENETIC ALGORITHM FOR CONSTRAINED OPTIMIZATION , 2022 .

[85]  Jun Gao,et al.  A survey of neural network ensembles , 2005, 2005 International Conference on Neural Networks and Brain.

[86]  Andy J. Keane,et al.  Surrogate-assisted coevolutionary search , 2002, Proceedings of the 9th International Conference on Neural Information Processing, 2002. ICONIP '02..

[87]  Gary B. Lamont,et al.  Multiobjective evolutionary algorithm test suites , 1999, SAC '99.

[88]  J. -F. M. Barthelemy,et al.  Approximation concepts for optimum structural design — a review , 1993 .

[89]  Marc Schoenauer,et al.  Surrogate Deterministic Mutation: Preliminary Results , 2001, Artificial Evolution.

[90]  Thomas Bäck,et al.  Metamodel-Assisted Evolution Strategies , 2002, PPSN.

[91]  Xin Yao,et al.  Fast Evolution Strategies , 1997, Evolutionary Programming.

[92]  Joshua D. Knowles,et al.  ParEGO: a hybrid algorithm with on-line landscape approximation for expensive multiobjective optimization problems , 2006, IEEE Transactions on Evolutionary Computation.

[93]  Min-Jea Tahk,et al.  Acceleration of the convergence speed of evolutionary algorithms using multi-layer neural networks , 2003 .

[94]  R. Fletcher Practical Methods of Optimization , 1988 .

[95]  Abdollah Homaifar,et al.  Constrained Optimization Via Genetic Algorithms , 1994, Simul..

[96]  C. Coello TREATING CONSTRAINTS AS OBJECTIVES FOR SINGLE-OBJECTIVE EVOLUTIONARY OPTIMIZATION , 2000 .

[97]  Kalyanmoy Deb,et al.  Constrained Test Problems for Multi-objective Evolutionary Optimization , 2001, EMO.

[98]  D.A.G. Vieira,et al.  Treating constraints as objectives in multiobjective optimization problems using niched Pareto genetic algorithm , 2004, IEEE Transactions on Magnetics.

[99]  Michael M. Skolnick,et al.  Using Genetic Algorithms in Engineering Design Optimization with Non-Linear Constraints , 1993, ICGA.

[100]  Bernhard Sendhoff,et al.  Reducing Fitness Evaluations Using Clustering Techniques and Neural Network Ensembles , 2004, GECCO.

[101]  John A. Nelder,et al.  A Simplex Method for Function Minimization , 1965, Comput. J..

[102]  Tomasz Arciszewski,et al.  Evolutionary computation and structural design: A survey of the state-of-the-art , 2005 .

[103]  Bu-Sung Lee,et al.  Memetic algorithm using multi-surrogates for computationally expensive optimization problems , 2007, Soft Comput..

[104]  Carlos A. Coello Coello,et al.  Use of a self-adaptive penalty approach for engineering optimization problems , 2000 .

[105]  S. Rajeev,et al.  Discrete Optimization of Structures Using Genetic Algorithms , 1992 .

[106]  Simon Haykin,et al.  Neural Networks: A Comprehensive Foundation , 1998 .

[107]  Liyong Tong,et al.  Improved genetic algorithm for design optimization of truss structures with sizing, shape and topology variables , 2005 .

[108]  J. C. Bean Genetics and random keys for sequencing amd optimization , 1993 .

[109]  Douglas C. Montgomery,et al.  Response Surface Methodology: Process and Product Optimization Using Designed Experiments , 1995 .

[110]  Timothy M. Mauery,et al.  COMPARISON OF RESPONSE SURFACE AND KRIGING MODELS FOR MULTIDISCIPLINARY DESIGN OPTIMIZATION , 1998 .

[111]  P. Koumoutsakos,et al.  Accelerating Evolutionary Algorithms Using Fitness Function Models , 2003 .

[112]  T. Ray,et al.  A framework for optimization using approximate functions , 2003, The 2003 Congress on Evolutionary Computation, 2003. CEC '03..

[113]  Grant P. Steven,et al.  Evolutionary structural optimisation (ESO) for combined topology and size optimisation of discrete structures , 2000 .

[114]  Marco Dorigo,et al.  Ant system: optimization by a colony of cooperating agents , 1996, IEEE Trans. Syst. Man Cybern. Part B.

[115]  Zbigniew Michalewicz,et al.  Evolutionary Algorithms, Homomorphous Mappings, and Constrained Parameter Optimization , 1999, Evolutionary Computation.

[116]  Andy J. Keane,et al.  Evolutionary optimization for computationally expensive problems using Gaussian processes , 2001 .

[117]  Christine A. Shoemaker,et al.  Local function approximation in evolutionary algorithms for the optimization of costly functions , 2004, IEEE Transactions on Evolutionary Computation.

[118]  Andy J. Keane,et al.  Combining approximation concepts with genetic algorithm-based structural optimization procedures , 1998 .

[119]  Z. Michalewicz,et al.  Genocop III: a co-evolutionary algorithm for numerical optimization problems with nonlinear constraints , 1995, Proceedings of 1995 IEEE International Conference on Evolutionary Computation.

[120]  Rainer Storn,et al.  Differential Evolution – A Simple and Efficient Heuristic for global Optimization over Continuous Spaces , 1997, J. Glob. Optim..

[121]  C. S. Krishnamoorthy,et al.  Structural optimization in practice: Potential applications of genetic algorithms , 2001 .

[122]  C. D. Gelatt,et al.  Optimization by Simulated Annealing , 1983, Science.

[123]  James N. Siddall,et al.  Optimal Engineering Design: Principles and Applications , 1982 .

[124]  David E. Goldberg,et al.  Genetic Algorithms with Sharing for Multimodalfunction Optimization , 1987, ICGA.

[125]  R. K. Ursem Multi-objective Optimization using Evolutionary Algorithms , 2009 .

[126]  G. Gary Wang,et al.  ADAPTIVE RESPONSE SURFACE METHOD - A GLOBAL OPTIMIZATION SCHEME FOR APPROXIMATION-BASED DESIGN PROBLEMS , 2001 .

[127]  Khaled Rasheed,et al.  Comparison of methods for developing dynamic reduced models for design optimization , 2002, Soft Comput..

[128]  Z. Michalewicz,et al.  Your brains and my beauty: parent matching for constrained optimisation , 1998, 1998 IEEE International Conference on Evolutionary Computation Proceedings. IEEE World Congress on Computational Intelligence (Cat. No.98TH8360).

[129]  S. Rajeev,et al.  Closure to “Genetic Algorithms‐Based Methodologies for Design Optimization of Trusses” by S. Rajeev and C. S. Krishnamoorthy , 1998 .

[130]  A. J. Booker,et al.  A rigorous framework for optimization of expensive functions by surrogates , 1998 .

[131]  Salvador Pintos,et al.  An Optimization Methodology of Alkaline-Surfactant-Polymer Flooding Processes Using Field Scale Numerical Simulation and Multiple Surrogates , 2004 .

[132]  S. Wu,et al.  Steady-state genetic algorithms for discrete optimization of trusses , 1995 .

[133]  Alan D. Christiansen,et al.  Using genetic algorithms for optimal design of trusses , 1994, Proceedings Sixth International Conference on Tools with Artificial Intelligence. TAI 94.

[134]  K. Lee,et al.  A new structural optimization method based on the harmony search algorithm , 2004 .

[135]  Kalyanmoy Deb,et al.  Simulated Binary Crossover for Continuous Search Space , 1995, Complex Syst..

[136]  Marc Schoenauer,et al.  ASCHEA: new results using adaptive segregational constraint handling , 2002, Proceedings of the 2002 Congress on Evolutionary Computation. CEC'02 (Cat. No.02TH8600).

[137]  T. Simpson,et al.  Fuzzy Clustering Based Hierarchical Metamodeling For Space Reduction and Design Optimization , 2004 .

[138]  Carlos A. Coello Coello,et al.  Constraint-handling in genetic algorithms through the use of dominance-based tournament selection , 2002, Adv. Eng. Informatics.

[139]  Kalyanmoy Deb,et al.  Computationally effective search and optimization procedure using coarse to fine approximations , 2003, The 2003 Congress on Evolutionary Computation, 2003. CEC '03..

[140]  Alain Ratle,et al.  Accelerating the Convergence of Evolutionary Algorithms by Fitness Landscape Approximation , 1998, PPSN.

[141]  Janis Auzins,et al.  Surrogate modeling in design optimization of stiffened composite shells , 2006 .

[142]  Meng-Sing Liou,et al.  Multiobjective optimization using coupled response surface model and evolutionary algorithm , 2004 .

[143]  Hansong Xiao,et al.  A New Constrained Multiobjective Optimization Algorithm Based on Artificial Immune Systems , 2007, 2007 International Conference on Mechatronics and Automation.

[144]  Zhun Fan,et al.  Constrained optimization based on hybrid evolutionary algorithm and adaptive constraint-handling technique , 2009 .

[145]  Yoram Singer,et al.  Boosting Applied to Tagging and PP Attachment , 1999, EMNLP.

[146]  Zbigniew Michalewicz,et al.  Evolutionary Algorithms in Engineering Applications , 1997, Springer Berlin Heidelberg.

[147]  K. S. Anderson,et al.  Genetic crossover strategy using an approximation concept , 1999, Proceedings of the 1999 Congress on Evolutionary Computation-CEC99 (Cat. No. 99TH8406).

[148]  Mariusz Pyrz,et al.  Optimal discrete truss design using improved sequential and genetic algorithm , 2001 .

[149]  James Kennedy,et al.  Particle swarm optimization , 2002, Proceedings of ICNN'95 - International Conference on Neural Networks.

[150]  Stephen J. Wright,et al.  Numerical Optimization , 2018, Fundamental Statistical Inference.

[151]  P. Hajela,et al.  Genetic algorithms in truss topological optimization , 1995 .

[152]  Thomas J. Santner,et al.  Design and analysis of computer experiments , 1998 .

[153]  M. Walker,et al.  A technique for the multiobjective optimisation of laminated composite structures using genetic algorithms and finite element analysis , 2003 .

[154]  K. Deb,et al.  Design of truss-structures for minimum weight using genetic algorithms , 2001 .

[155]  Xin Yao,et al.  Stochastic ranking for constrained evolutionary optimization , 2000, IEEE Trans. Evol. Comput..

[156]  Tetsuo Morimoto,et al.  An intelligent approach for optimal control of fruit-storage process using neural networks and genetic algorithms , 1997 .

[157]  Kevin M. Passino,et al.  Biomimicry of bacterial foraging for distributed optimization and control , 2002 .

[158]  Z. K. Zhang,et al.  Global convergence of unconstrained and bound constrained surrogate-assisted evolutionary search in aerodynamic shape design , 2003, The 2003 Congress on Evolutionary Computation, 2003. CEC '03..

[159]  Robert E. Smith,et al.  Fitness inheritance in genetic algorithms , 1995, SAC '95.

[160]  Pablo Moscato,et al.  A Gentle Introduction to Memetic Algorithms , 2003, Handbook of Metaheuristics.

[161]  Zbigniew Michalewicz,et al.  Evolutionary Algorithms for Constrained Parameter Optimization Problems , 1996, Evolutionary Computation.

[162]  Boxin Tang Orthogonal Array-Based Latin Hypercubes , 1993 .

[163]  T. Ray,et al.  A framework for design optimization using surrogates , 2005 .

[164]  Hans-Paul Schwefel,et al.  Evolution and optimum seeking , 1995, Sixth-generation computer technology series.

[165]  M. Farina A neural network based generalized response surface multiobjective evolutionary algorithm , 2002, Proceedings of the 2002 Congress on Evolutionary Computation. CEC'02 (Cat. No.02TH8600).

[166]  Bernhard Sendhoff,et al.  Comparing neural networks and Kriging for fitness approximation in evolutionary optimization , 2003, The 2003 Congress on Evolutionary Computation, 2003. CEC '03..

[167]  A. Schmitz,et al.  Reducing the cost of computational fluid dynamics optimization using multi layer perceptrons , 2002, Proceedings of the 2002 International Joint Conference on Neural Networks. IJCNN'02 (Cat. No.02CH37290).

[168]  John H. Holland,et al.  Adaptation in Natural and Artificial Systems: An Introductory Analysis with Applications to Biology, Control, and Artificial Intelligence , 1992 .

[169]  Michael T. M. Emmerich,et al.  Single- and multiobjective evolutionary optimization assisted by Gaussian random field metamodels , 2006, IEEE Transactions on Evolutionary Computation.

[170]  D. Goldberg,et al.  Don't evaluate, inherit , 2001 .

[171]  Vincent Herbert,et al.  Hybrid method for aerodynamic shape optimization in automotive industry , 2004 .

[172]  Richard J. Beckman,et al.  A Comparison of Three Methods for Selecting Values of Input Variables in the Analysis of Output From a Computer Code , 2000, Technometrics.

[173]  Jonathan A. Wright,et al.  Self-adaptive fitness formulation for constrained optimization , 2003, IEEE Trans. Evol. Comput..

[174]  Bernhard Sendhoff,et al.  Neural network regularization and ensembling using multi-objective evolutionary algorithms , 2004, Proceedings of the 2004 Congress on Evolutionary Computation (IEEE Cat. No.04TH8753).

[175]  Kalyanmoy Deb,et al.  Optimal truss-structure design using real-coded genetic algorithms , 1998 .

[176]  Layne T. Watson,et al.  COMPOSITE LAMINATE DESIGN OPTIMIZATION BY GENETIC ALGORITHM WITH GENERALIZED ELITIST SELECTION , 2001 .

[177]  Jongsoo Lee,et al.  Parallel Genetic Algorithm Implementation in Multidisciplinary Rotor Blade Design , 1996 .

[178]  Y. Xie,et al.  A simple evolutionary procedure for structural optimization , 1993 .