Impurities and Electronic Property Variations of Natural MoS2 Crystal Surfaces.
暂无分享,去创建一个
Luigi Colombo | Hui Zhu | Diego Barrera | Stephen McDonnell | Angelica Azcatl | Jian Wang | Manuel Quevedo-Lopez | R. Wallace | L. Colombo | H. Alshareef | M. Quevedo-López | C. Hinkle | Jian Wang | J. Hsu | S. McDonnell | R. Addou | A. Azcatl | Hui Zhu | Diego Barrera | Robert M Wallace | Zaibing Guo | Rafik Addou | Julia W P Hsu | Husam N Alshareef | Zaibing Guo | Christopher L Hinkle
[1] Scott Anderson,et al. Monitoring wafer cleanliness and metal contamination via VPD ICP-MS: Case studies for next generation requirements , 2010 .
[2] W. Spicer,et al. Photoemission studies of layered transition metal dichalcogenides , 1977 .
[3] S. Sanvito,et al. Possible doping strategies for MoS 2 monolayers: An ab initio study , 2013 .
[4] M. T. Martínez,et al. Preparation of a TiO 2 -MoS 2 nanoparticle-based composite by solvothermal method with enhanced photoactivity for the degradation of organic molecules in water under UV light , 2011 .
[5] D. Beauchemin. Inductively coupled plasma mass spectrometry. , 2006, Analytical chemistry.
[6] Yang,et al. Raman study and lattice dynamics of single molecular layers of MoS2. , 1991, Physical review. B, Condensed matter.
[7] A. Splendiani,et al. Emerging photoluminescence in monolayer MoS2. , 2010, Nano letters.
[8] M. Batzill,et al. Direct observation of interlayer hybridization and Dirac relativistic carriers in graphene/MoS₂ van der Waals heterostructures. , 2015, Nano letters.
[9] Mietek Jaroniec,et al. Synergetic effect of MoS2 and graphene as cocatalysts for enhanced photocatalytic H2 production activity of TiO2 nanoparticles. , 2012, Journal of the American Chemical Society.
[10] R. H. Williams,et al. Electronic properties of cleaved molybdenum disulphide surfaces , 1974 .
[11] F. Wypych,et al. 1T‐MoS2, A New Metallic Modification of Molybdenum Disulfide. , 1993 .
[12] R. Powell. Interface Barrier Energy Determination from Voltage Dependence of Photoinjected Currents , 1970 .
[13] Moon J. Kim,et al. Atomically thin heterostructures based on single-layer tungsten diselenide and graphene. , 2014, Nano letters.
[14] R. Lieth,et al. Transition Metal Dichalcogenides , 1977 .
[15] S. Ciraci,et al. Dissociation of H 2 O at the vacancies of single-layer MoS 2 , 2012 .
[16] Kaustav Banerjee,et al. Functionalization of transition metal dichalcogenides with metallic nanoparticles: implications for doping and gas-sensing. , 2015, Nano letters.
[17] R. Haasch,et al. 2-D Material Molybdenum Disulfide Analyzed by XPS , 2014 .
[18] Textured MoS2 thin films obtained on tungsten: Electrical properties of the W/MoS2 contact , 2000 .
[19] D. Tsai,et al. Monolayer MoS2 heterojunction solar cells. , 2014, ACS nano.
[20] John Robertson,et al. Sulfur vacancies in monolayer MoS2 and its electrical contacts , 2013 .
[21] M. Kamaratos,et al. Adsorption studies on Ar+ -sputtered MoS2(0001) , 1986 .
[22] Joshua J. Golden,et al. Rhenium variations in molybdenite (MoS2): Evidence for progressive subsurface oxidation , 2013 .
[23] H. Skriver,et al. Surface energy and work function of elemental metals. , 1992, Physical review. B, Condensed matter.
[24] Wolfram Jaegermann,et al. Band lineup of layered semiconductor heterointerfaces prepared by van der Waals epitaxy: Charge transfer correction term for the electron affinity rule , 1999 .
[25] Moon J. Kim,et al. Transition metal dichalcogenide and hexagonal boron nitride heterostructures grown by molecular beam epitaxy , 2015 .
[26] J. Appenzeller,et al. High performance multilayer MoS2 transistors with scandium contacts. , 2013, Nano letters.
[27] R. Wallace,et al. Surface Defects on Natural MoS2. , 2015, ACS applied materials & interfaces.
[28] A. Radenović,et al. Single-layer MoS2 transistors. , 2011, Nature nanotechnology.
[29] Wilford N. Hansen,et al. Standard reference surfaces for work function measurements in air , 2001 .
[30] K. Kimura,et al. Improvement of sensitivity in high-resolution Rutherford backscattering spectroscopy. , 2011, The Review of scientific instruments.
[31] C. Nordling,et al. Electron spectroscopic determination of the chemical valence state , 1964 .
[32] K. Kalantar-zadeh,et al. Characterization of metal contacts for two-dimensional MoS2 nanoflakes , 2013 .
[33] M. Batzill,et al. Wet-transfer of CVD-grown graphene onto sulfur-protected W(110) , 2015 .
[34] S. Sze,et al. Physics of Semiconductor Devices: Sze/Physics , 2006 .
[35] Moon J. Kim,et al. HfSe2 thin films: 2D transition metal dichalcogenides grown by molecular beam epitaxy. , 2015, ACS nano.
[36] R. Wallace,et al. Surface oxidation energetics and kinetics on MoS2 monolayer , 2015 .
[37] P. Ye,et al. Channel length scaling of MoS2 MOSFETs. , 2012, ACS nano.
[38] R. Wallace. In-Situ Studies on 2D Materials , 2014 .
[39] K. Banerjee,et al. Correction to MoS2 Field-Effect Transistor for Next-Generation Label-Free Biosensors , 2014 .
[40] Stephen McDonnell,et al. Defect-dominated doping and contact resistance in MoS2. , 2014, ACS nano.
[41] Phong Nguyen,et al. Controlled, defect-guided, metal-nanoparticle incorporation onto MoS2 via chemical and microwave routes: electrical, thermal, and structural properties. , 2013, Nano letters.
[42] H. Tributsch,et al. The Role of Carrier Diffusion and Indirect Optical Transitions in the Photoelectrochemical Behavior of Layer Type d‐Band Semiconductors , 1980 .
[43] D. Jena,et al. Charge Scattering and Mobility in Atomically Thin Semiconductors , 2013, 1310.7157.
[44] Marco Bernardi,et al. Extraordinary sunlight absorption and one nanometer thick photovoltaics using two-dimensional monolayer materials. , 2013, Nano letters.
[45] H. Michaelson. The work function of the elements and its periodicity , 1977 .
[46] H. Itoh,et al. Scanning tunneling microscopy observation of MoS2 surface and gold clusters deposited on MoS2 surface , 1990 .
[47] Deji Akinwande,et al. High-performance, highly bendable MoS2 transistors with high-k dielectrics for flexible low-power systems. , 2013, ACS nano.
[48] N. McIntyre,et al. Effects of argon ion bombardment on basal plane and polycrystalline MoS2 , 1990 .
[49] Qing Hua Wang,et al. Electronics and optoelectronics of two-dimensional transition metal dichalcogenides. , 2012, Nature nanotechnology.
[50] K. Ng,et al. The Physics of Semiconductor Devices , 2019, Springer Proceedings in Physics.
[51] R. Prins,et al. Scanning Tunneling Microscopic Investigation of 1T-MoS2 , 1998 .
[52] J. Shan,et al. Atomically thin MoS₂: a new direct-gap semiconductor. , 2010, Physical review letters.
[53] R. Wallace,et al. Impact of intrinsic atomic defects on the electronic structure of MoS2 monolayers , 2014, Nanotechnology.
[54] C. Battaglia,et al. Hole contacts on transition metal dichalcogenides: interface chemistry and band alignments. , 2014, ACS nano.
[55] Hisato Yamaguchi,et al. Photoluminescence from chemically exfoliated MoS2. , 2011, Nano letters.
[56] J. Wilson,et al. The transition metal dichalcogenides discussion and interpretation of the observed optical, electrical and structural properties , 1969 .
[57] P. D. Fleischauer,et al. Summary Abstract: Noble gas ion bombardment of the basal plane surface of MoS2 , 1987 .
[58] R. Frindt,et al. Single Crystals of MoS2 Several Molecular Layers Thick , 1966 .
[59] Peide D. Ye,et al. Contact research strategy for emerging molybdenum disulfide and other two-dimensional field-effect transistors , 2014 .
[60] R. R. Haering,et al. Structural destabilization induced by lithium intercalation in MoS2 and related compounds , 1983 .
[61] W. Jaegermann,et al. Li intercalation across and along the van der Waals surfaces of MoS2(0001) , 1995 .
[62] P. Ye,et al. (Invited) Fundamentals in MoS2 Transistors: Dielectric, Scaling and Metal Contacts , 2013 .
[63] W. 0. Winer. Molybdenum disulfide as a lubricant: A review of the fundamental knowledge , 1967 .
[64] M. Batzill,et al. Interface properties of CVD grown graphene transferred onto MoS2(0001). , 2014, Nanoscale.
[65] W. Sachtler,et al. The work function of gold , 1966 .
[66] Gautam Gupta,et al. Phase-engineered low-resistance contacts for ultrathin MoS2 transistors. , 2014, Nature materials.
[67] B. Parkinson,et al. Detailed photocurrent spectroscopy of the semiconducting group VIB transition metal dichalcogenides , 1982 .