Conformally non-flat spacetime representing dense compact objects

A new conformally non-flat interior spacetime embedded in five-dimensional (5D) pseudo Euclidean space is explored in this paper. We proceed our calculation with the assumption of spherically symmetric anisotropic matter distribution and Karmarkar condition (necessary condition for class one). This solution is free from geometrical singularity and well-behaved in all respects. We ansatz a new type of metric potential g11 and solve for the metric potential g00 via Karmarkar condition. Further, all the physical parameters are determined from Einstein’s field equations using the two metric potentials. All the constants of integration are determined using boundary conditions. Due to its conformally non-flat character, it can represent bounded configurations. Therefore, we have used it to model two compact stars Vela X-1 and Cyg X-2. Indeed, the obtained masses and radii of these two objects from our solution are well matched with those observed values given in [T. Gangopadhyay et al., Mon. Not. R. Astron. Soc. 431, 3216 (2013)] and [J. Casares et al., Mon. Not. R. Astron. Soc. 401, 2517 (2010)]. The equilibrium of the models is investigated from generalized TOV-equation. We have adopted [L. Herrera’s, Phys. Lett. A 165, 206 (1992)] method and static stability criterion of Harisson–Zeldovich–Novikov [B. K. Harrison et al., Gravitational Theory and Gravitational Collapse (University of Chicago Press, 1965); Ya. B. Zeldovich and I. D. Novikov, Relativistic Astrophysics, Vol. 1, Stars and Relativity (University of Chicago Press, 1971)] to analyze the stability of the models.

[1]  K. Singh,et al.  A 4D spacetime embedded in a 5D pseudo-Euclidean space describing interior of compact stars , 2017 .

[2]  P. Bhar,et al.  A charged anisotropic well-behaved Adler–Finch–Skea solution satisfying Karmarkar condition , 2017, 1702.00299.

[3]  P. Bhar,et al.  Solutions of the Einstein’s field equations with anisotropic pressure compatible with cold star model , 2016 .

[4]  N. Pant,et al.  Anisotropic compact stars in Karmarkar spacetime , 2016, 1610.03698.

[5]  K. Singh,et al.  A family of well-behaved Karmarkar spacetimes describing interior of relativistic stars , 2016, 1607.05971.

[6]  Y. K. Gupta,et al.  A new model for spherically symmetric anisotropic compact star , 2016 .

[7]  K. Singh,et al.  A new analytic solution representing anisotropic stellar objects in embedding class I , 2016 .

[8]  K. Singh,et al.  Charged anisotropic Buchdahl solution as an embedding class I spacetime , 2016 .

[9]  P. Bhar,et al.  A new solution of embedding class I representing anisotropic fluid sphere in general relativity , 2016, 1604.01013.

[10]  Y. K. Gupta,et al.  Anisotropic models for compact stars , 2015, 1504.00209.

[11]  J. Sunzu,et al.  Quark star model with charged anisotropic matter , 2014, 1412.8150.

[12]  P. Bhar,et al.  The dark energy star and stability analysis , 2014, 1409.4394.

[13]  P. Bhar Vaidya–Tikekar type superdense star admitting conformal motion in presence of quintessence field , 2014, 1408.6436.

[14]  J. Sunzu,et al.  Charged anisotropic models for quark stars , 2014, 1412.8140.

[15]  S. Maharaj,et al.  Compact models with regular charge distributions , 2013, 1310.0433.

[16]  F. C. Ragel,et al.  A class of exact strange quark star model , 2013, Pramana.

[17]  S. Maharaj,et al.  Some charged polytropic models , 2013, 1310.0440.

[18]  B. S. Ratanpal,et al.  RELATIVISTIC STELLAR MODEL ADMITTING A QUADRATIC EQUATION OF STATE , 2013, 1307.1439.

[19]  M. Dey,et al.  Strange star equation of state fits the refined mass measurement of 12 pulsars and predicts their radii , 2013, 1303.1956.

[20]  S. Hansraj Perfect fluid metrics conformal to the Schwarzschild exterior spacetime , 2012 .

[21]  Azad A. Siddiqui,et al.  Charged anisotropic matter with quadratic equation of state , 2011 .

[22]  R. Rebolo,et al.  On the mass of the neutron star in Cyg X-2 , 2009, 0910.4496.

[23]  S. Maharaj,et al.  Charged anisotropic matter with a linear equation of state , 2008, 0810.3809.

[24]  L. Herrera,et al.  All static spherically symmetric anisotropic solutions of Einstein's equations , 2007, 0712.0713.

[25]  S. Maharaj,et al.  Classes of exact Einstein–Maxwell solutions , 2007, 0808.1998.

[26]  L. Núñez,et al.  Sound speeds, cracking and the stability of self-gravitating anisotropic compact objects , 2007, 0706.3452.

[27]  S. Maharaj,et al.  A class of relativistic stars with a linear equation of state , 2007, gr-qc/0702046.

[28]  C. Boehmer,et al.  Bounds on the basic physical parameters for anisotropic compact general relativistic objects , 2006, gr-qc/0609061.

[29]  S. Maharaj,et al.  New anisotropic models from isotropic solutions , 2005, gr-qc/0510073.

[30]  F. Lobo Stable dark energy stars , 2005, gr-qc/0508115.

[31]  T. Harko,et al.  Relativistic compact objects in isotropic coordinates , 2005, gr-qc/0504136.

[32]  S. Maharaj,et al.  Lie symmetries for equations in conformal geometries , 2005, gr-qc/0504104.

[33]  T. Harko,et al.  Quark stars admitting a one parameter group of conformal motions , 2003, gr-qc/0309069.

[34]  M. Gleiser,et al.  Anisotropic Stars II: Stability , 2003, gr-qc/0303077.

[35]  B. Ivanov Maximum bounds on the surface redshift of anisotropic stars , 2002 .

[36]  T. Harko,et al.  EXACT MODELS FOR ANISOTROPIC RELATIVISTIC STARS , 2002 .

[37]  T. Harko,et al.  Anisotropic relativistic stellar models , 2001, Annalen der Physik.

[38]  M. Gleiser,et al.  Anisotropic Stars: Exact Solutions , 2000, astro-ph/0012265.

[39]  L. Herrera,et al.  Local anisotropy in self-gravitating systems , 1997 .

[40]  S. Maharaj,et al.  Behaviour of the Kramer radiating star , 1997 .

[41]  A. Mehra,et al.  Anisotropic spheres with variable energy density in general relativity , 1994 .

[42]  N. O. Santos,et al.  Dynamical instability for radiating anisotropic collapse , 1993 .

[43]  L. Herrera Cracking of self-gravitating compact objects , 1992 .

[44]  J. Skea,et al.  A realistic stellar model based on an ansatz of Duorah and Ray , 1989 .

[45]  J. P. Leon General relativistic electromagnetic mass models of neutral spherically symmetric systems , 1987 .

[46]  R. Tikekar,et al.  Exact relativistic model for a superdense star , 1982 .

[47]  S. N. Pandey,et al.  Insufficiency of Karmarkar's condition , 1982 .

[48]  G. Ruggeri,et al.  Adiabatic contraction of anisotropic spheres in general relativity , 1979 .

[49]  W. Hillebrandt,et al.  Anisotropic neutron star models: stability against radial and nonradial pulsations. , 1976 .

[50]  E. Liang,et al.  Anisotropic spheres in general relativity , 1974 .

[51]  M. Ruderman Pulsars: Structure and Dynamics , 1972 .

[52]  M. Kohler,et al.  Zentralsymmetrische statische Schwerefelder mit Räumen der Klasse 1 , 1965 .

[53]  H. Bondi The contraction of gravitating spheres , 1964, Proceedings of the Royal Society of London. Series A. Mathematical and Physical Sciences.

[54]  S. Chandrasekhar Dynamical Instability of Gaseous Masses Approaching the Schwarzschild Limit in General Relativity , 1964 .

[55]  H. Buchdahl General Relativistic Fluid Spheres , 1959 .

[56]  K. R. Karmarkar Gravitational metrics of spherical symmetry and class one , 1948 .