Conformally non-flat spacetime representing dense compact objects
暂无分享,去创建一个
P. Bhar | F. Rahaman | K. Singh | N. Pant | Mansur Rahaman
[1] K. Singh,et al. A 4D spacetime embedded in a 5D pseudo-Euclidean space describing interior of compact stars , 2017 .
[2] P. Bhar,et al. A charged anisotropic well-behaved Adler–Finch–Skea solution satisfying Karmarkar condition , 2017, 1702.00299.
[3] P. Bhar,et al. Solutions of the Einstein’s field equations with anisotropic pressure compatible with cold star model , 2016 .
[4] N. Pant,et al. Anisotropic compact stars in Karmarkar spacetime , 2016, 1610.03698.
[5] K. Singh,et al. A family of well-behaved Karmarkar spacetimes describing interior of relativistic stars , 2016, 1607.05971.
[6] Y. K. Gupta,et al. A new model for spherically symmetric anisotropic compact star , 2016 .
[7] K. Singh,et al. A new analytic solution representing anisotropic stellar objects in embedding class I , 2016 .
[8] K. Singh,et al. Charged anisotropic Buchdahl solution as an embedding class I spacetime , 2016 .
[9] P. Bhar,et al. A new solution of embedding class I representing anisotropic fluid sphere in general relativity , 2016, 1604.01013.
[10] Y. K. Gupta,et al. Anisotropic models for compact stars , 2015, 1504.00209.
[11] J. Sunzu,et al. Quark star model with charged anisotropic matter , 2014, 1412.8150.
[12] P. Bhar,et al. The dark energy star and stability analysis , 2014, 1409.4394.
[13] P. Bhar. Vaidya–Tikekar type superdense star admitting conformal motion in presence of quintessence field , 2014, 1408.6436.
[14] J. Sunzu,et al. Charged anisotropic models for quark stars , 2014, 1412.8140.
[15] S. Maharaj,et al. Compact models with regular charge distributions , 2013, 1310.0433.
[16] F. C. Ragel,et al. A class of exact strange quark star model , 2013, Pramana.
[17] S. Maharaj,et al. Some charged polytropic models , 2013, 1310.0440.
[18] B. S. Ratanpal,et al. RELATIVISTIC STELLAR MODEL ADMITTING A QUADRATIC EQUATION OF STATE , 2013, 1307.1439.
[19] M. Dey,et al. Strange star equation of state fits the refined mass measurement of 12 pulsars and predicts their radii , 2013, 1303.1956.
[20] S. Hansraj. Perfect fluid metrics conformal to the Schwarzschild exterior spacetime , 2012 .
[21] Azad A. Siddiqui,et al. Charged anisotropic matter with quadratic equation of state , 2011 .
[22] R. Rebolo,et al. On the mass of the neutron star in Cyg X-2 , 2009, 0910.4496.
[23] S. Maharaj,et al. Charged anisotropic matter with a linear equation of state , 2008, 0810.3809.
[24] L. Herrera,et al. All static spherically symmetric anisotropic solutions of Einstein's equations , 2007, 0712.0713.
[25] S. Maharaj,et al. Classes of exact Einstein–Maxwell solutions , 2007, 0808.1998.
[26] L. Núñez,et al. Sound speeds, cracking and the stability of self-gravitating anisotropic compact objects , 2007, 0706.3452.
[27] S. Maharaj,et al. A class of relativistic stars with a linear equation of state , 2007, gr-qc/0702046.
[28] C. Boehmer,et al. Bounds on the basic physical parameters for anisotropic compact general relativistic objects , 2006, gr-qc/0609061.
[29] S. Maharaj,et al. New anisotropic models from isotropic solutions , 2005, gr-qc/0510073.
[30] F. Lobo. Stable dark energy stars , 2005, gr-qc/0508115.
[31] T. Harko,et al. Relativistic compact objects in isotropic coordinates , 2005, gr-qc/0504136.
[32] S. Maharaj,et al. Lie symmetries for equations in conformal geometries , 2005, gr-qc/0504104.
[33] T. Harko,et al. Quark stars admitting a one parameter group of conformal motions , 2003, gr-qc/0309069.
[34] M. Gleiser,et al. Anisotropic Stars II: Stability , 2003, gr-qc/0303077.
[35] B. Ivanov. Maximum bounds on the surface redshift of anisotropic stars , 2002 .
[36] T. Harko,et al. EXACT MODELS FOR ANISOTROPIC RELATIVISTIC STARS , 2002 .
[37] T. Harko,et al. Anisotropic relativistic stellar models , 2001, Annalen der Physik.
[38] M. Gleiser,et al. Anisotropic Stars: Exact Solutions , 2000, astro-ph/0012265.
[39] L. Herrera,et al. Local anisotropy in self-gravitating systems , 1997 .
[40] S. Maharaj,et al. Behaviour of the Kramer radiating star , 1997 .
[41] A. Mehra,et al. Anisotropic spheres with variable energy density in general relativity , 1994 .
[42] N. O. Santos,et al. Dynamical instability for radiating anisotropic collapse , 1993 .
[43] L. Herrera. Cracking of self-gravitating compact objects , 1992 .
[44] J. Skea,et al. A realistic stellar model based on an ansatz of Duorah and Ray , 1989 .
[45] J. P. Leon. General relativistic electromagnetic mass models of neutral spherically symmetric systems , 1987 .
[46] R. Tikekar,et al. Exact relativistic model for a superdense star , 1982 .
[47] S. N. Pandey,et al. Insufficiency of Karmarkar's condition , 1982 .
[48] G. Ruggeri,et al. Adiabatic contraction of anisotropic spheres in general relativity , 1979 .
[49] W. Hillebrandt,et al. Anisotropic neutron star models: stability against radial and nonradial pulsations. , 1976 .
[50] E. Liang,et al. Anisotropic spheres in general relativity , 1974 .
[51] M. Ruderman. Pulsars: Structure and Dynamics , 1972 .
[52] M. Kohler,et al. Zentralsymmetrische statische Schwerefelder mit Räumen der Klasse 1 , 1965 .
[53] H. Bondi. The contraction of gravitating spheres , 1964, Proceedings of the Royal Society of London. Series A. Mathematical and Physical Sciences.
[54] S. Chandrasekhar. Dynamical Instability of Gaseous Masses Approaching the Schwarzschild Limit in General Relativity , 1964 .
[55] H. Buchdahl. General Relativistic Fluid Spheres , 1959 .
[56] K. R. Karmarkar. Gravitational metrics of spherical symmetry and class one , 1948 .