A Miniaturized Flexible Antenna Printed on a High Dielectric Constant Nanopaper Composite

A high-dielectric-constant and flexible cellulose nanopaper composite is prepared by mixing a small amount of silver nanowires with cellulose nanofibers. The nanopaper antenna is downsized by about a half when using the nanopaper substrate. The nanopaper antenna has potential in wearable wireless communication devices.

[1]  K. Suganuma,et al.  Uniformly connected conductive networks on cellulose nanofiber paper for transparent paper electronics , 2014 .

[2]  Pedro Barquinha,et al.  Recyclable, Flexible, Low‐Power Oxide Electronics , 2013 .

[3]  G. Whitesides,et al.  Stretchable Microfluidic Radiofrequency Antennas , 2010, Advanced materials.

[4]  M. Hsieh,et al.  Electrically conductive lines on cellulose nanopaper for flexible electrical devices. , 2013, Nanoscale.

[5]  Masaya Nogi,et al.  Optically Transparent Nanofiber Paper , 2009 .

[6]  Qiming Zhang,et al.  Enhanced Dielectric and Electromechanical Responses in High Dielectric Constant All‐Polymer Percolative Composites , 2004 .

[7]  Shengtao Li,et al.  Fundamentals, processes and applications of high-permittivity polymer–matrix composites , 2012 .

[8]  Sangyong Lee,et al.  Comparison of theoretical predictions and experimental values of the dielectric constant of epoxy/BaTiO3 composite embedded capacitor films , 2005 .

[9]  Yoshihide Fujisaki,et al.  Transparent Nanopaper‐Based Flexible Organic Thin‐Film Transistor Array , 2014 .

[10]  K. Suganuma,et al.  Preparation of Ag nanorods with high yield by polyol process , 2009 .

[11]  Faqi Yu,et al.  Facile strategy for fabrication of transparent superhydrophobic coatings on the surface of paper , 2013 .

[12]  J. Lee Conforming hierarchical vector elements , 2002, IEEE Antennas and Propagation Society International Symposium (IEEE Cat. No.02CH37313).

[13]  F. Luo,et al.  Effect of magnetic fillers on the electromagnetic properties of CaCu3Ti4O12–epoxy composites within the 2–18 GHz range , 2013 .

[14]  Vladimir Leonov,et al.  Wearable electronics self-powered by using human body heat: The state of the art and the perspective , 2009 .

[15]  E. Fortunato,et al.  Nanocrystalline cellulose applied simultaneously as the gate dielectric and the substrate in flexible field effect transistors , 2014, Nanotechnology.

[16]  L. Song,et al.  Machinable long PVP-stabilized silver nanowires. , 2004, Chemistry.

[17]  Zhiqiang Fang,et al.  Development, application and commercialization of transparent paper , 2014 .

[18]  Zhigang Wu,et al.  Microfluidic stretchable RF electronics. , 2010, Lab on a chip.

[19]  L. Kempel,et al.  Nanostructured flexible magneto-dielectrics for radio frequency applications , 2014 .

[20]  H. Ishikuro,et al.  A 750 Mb/s, 12 pJ/b, 6-to-10 GHz CMOS IR-UWB Transmitter With Embedded On-Chip Antenna , 2009, IEEE Journal of Solid-State Circuits.

[21]  George M. Whitesides,et al.  Omniphobic “RF Paper” Produced by Silanization of Paper with Fluoroalkyltrichlorosilanes , 2014 .

[22]  Peter J. Hotchkiss,et al.  Phosphonic Acid‐Modified Barium Titanate Polymer Nanocomposites with High Permittivity and Dielectric Strength , 2007 .

[23]  Yi Yin,et al.  Giant Dielectric Permittivities in Functionalized Carbon-Nanotube/ Electroactive-Polymer Nanocomposites† , 2007 .

[24]  Akira Isogai,et al.  Transparent, conductive, and printable composites consisting of TEMPO-oxidized nanocellulose and carbon nanotube. , 2013, Biomacromolecules.

[25]  K. Suganuma,et al.  High thermal stability of optical transparency in cellulose nanofiber paper , 2013 .

[26]  D. Cristofori,et al.  High dielectric constant rutile–polystyrene composite with enhanced percolative threshold , 2013 .

[27]  Pedro Barquinha,et al.  Write-erase and read paper memory transistor , 2008 .

[28]  Zhiqiang Fang,et al.  Silver nanowire transparent conducting paper-based electrode with high optical haze , 2014 .

[29]  K. Suganuma,et al.  Electrical functionality of inkjet-printed silver nanoparticle conductive tracks on nanostructured paper compared with those on plastic substrates , 2013 .

[30]  L. Kempel,et al.  Controlled synthesis of core–shell iron–silica nanoparticles and their magneto-dielectric properties in polymer composites , 2011, Nanotechnology.

[31]  Zhenhua Jiang,et al.  In-situ preparation of high dielectric poly (metal phthalocyanine) imide/MWCNTs nanocomposites , 2014 .

[32]  K. Suganuma,et al.  Foldable nanopaper antennas for origami electronics. , 2013, Nanoscale.

[33]  Ilker S. Bayer,et al.  Water-repellent cellulose fiber networks with multifunctional properties. , 2011, ACS applied materials & interfaces.

[34]  Xingyi Huang,et al.  Ferroelectric polymer/silver nanocomposites with high dielectric constant and high thermal conductivity , 2009 .

[35]  Shengtao Li,et al.  Fabrication and Dielectric Characterization of Advanced BaTiO3/Polyimide Nanocomposite Films with High Thermal Stability , 2008 .

[36]  Z. Dang,et al.  Carbon nanotube composites with high dielectric constant at low percolation threshold , 2005 .

[37]  E. Fortunato,et al.  Complementary Metal Oxide Semiconductor Technology With and On Paper , 2011, Advanced materials.

[38]  Gang Meng,et al.  Cellulose Nanofiber Paper as an Ultra Flexible Nonvolatile Memory , 2014, Scientific Reports.

[39]  G. Arlt,et al.  Dielectric properties of fine‐grained barium titanate ceramics , 1985 .

[40]  K. Suganuma,et al.  Fabrication of silver nanowire transparent electrodes at room temperature , 2011 .

[41]  E. Fortunato,et al.  The influence of fibril composition and dimension on the performance of paper gated oxide transistors , 2014, Nanotechnology.

[42]  J. Yi,et al.  Dielectric polymer matrix composite films of CNT coated with anatase TiO2 , 2011 .

[43]  Akira Isogai,et al.  Transparent and high gas barrier films of cellulose nanofibers prepared by TEMPO-mediated oxidation. , 2009, Biomacromolecules.

[44]  Zhi-Min Dang,et al.  Dielectric behavior of a metal-polymer composite with low percolation threshold , 2006 .

[45]  K. Roberts,et al.  Thesis , 2002 .