A posteriori error estimation and adaptive mesh refinement for a multiscale operator decomposition approach to fluid – solid heat transfer

We analyze a multiscale operator decomposition finite element method for a conjugate heat transfer problem consisting of a fluid and a solid coupled through a common boundary. We derive accurate a posteriori error estimates that account for all sources of error, and in particular the transfer of error between fluid and solid domains. We use these estimates to guide adaptive mesh refinement. In addition, we provide compelling numerical evidence that the order of convergence of the operator decomposition method is limited by the accuracy of the transferred gradient information, and adapt a so-called boundary flux recovery method developed for elliptic problems in order to regain the optimal order of accuracy in an efficient manner. In an appendix, we provide an argument that explains the numerical results provided sufficient smoothness is assumed.

[1]  Endre Süli,et al.  Adaptive finite element methods for differential equations , 2003, Lectures in mathematics.

[2]  R. Rautmann Approximation Methods for Navier-Stokes Problems , 1980 .

[3]  Barry Smith,et al.  Domain Decomposition Methods for Partial Differential Equations , 1997 .

[4]  Michael J. Holst,et al.  Generalized Green's Functions and the Effective Domain of Influence , 2005, SIAM J. Sci. Comput..

[5]  Daoqi Yang,et al.  A parallel iterative nonoverlapping domain decomposition procedure for elliptic problems , 1996 .

[6]  O. Widlund,et al.  Iterative Methods for the Solution of Elliptic Problems on Regions, Partitioned Into Substructures , 2015 .

[7]  Rolf Rannacher,et al.  Duality-based adaptivity in the hp-finite element method , 2003, J. Num. Math..

[8]  Mary F. Wheeler,et al.  A Galerkin Procedure for Estimating the Flux for Two-Point Boundary Value Problems , 1974 .

[9]  Endre Süli,et al.  Adaptive error control for finite element approximations of the lift and drag coefficients in viscous flow , 1997 .

[10]  Daoqi Yang,et al.  A Parallel Nonoverlapping Schwarz Domain Decomposition Method for Elliptic Interface Problems , 1997 .

[11]  Simon Tavener,et al.  Bifurcation for flow past a cylinder between parallel planes , 1995, Journal of Fluid Mechanics.

[12]  Rolf Rannacher,et al.  An optimal control approach to a posteriori error estimation in finite element methods , 2001, Acta Numerica.

[13]  Ivan Yotov,et al.  Interface solvers and preconditioners of domain decomposition type for multiphase flow in multiblock porous media , 2001 .

[14]  John R. Rice,et al.  Interface Relaxation Methods for Elliptic Differential Equations , 2000 .

[15]  Michael B. Giles,et al.  Stability analysis of numerical interface conditions in fluid-structure thermal analysis , 1997 .

[16]  D. Estep A posteriori error bounds and global error control for approximation of ordinary differential equations , 1995 .

[17]  Claes Johnson,et al.  Introduction to Adaptive Methods for Differential Equations , 1995, Acta Numerica.

[18]  Jérôme Droniou Error estimates for the convergence of a finite volume discretization of convection-diffusion equations , 2003 .

[19]  L. Veidinger,et al.  On the numerical determination of the best approximations in the Chebyshev sense , 1960 .

[20]  Tim Wildey,et al.  A Posteriori Analysis and Improved Accuracy for an Operator Decomposition Solution of a Conjugate Heat Transfer Problem , 2008, SIAM J. Numer. Anal..

[21]  Dongho Chae,et al.  Local existence and blow-up criterion of Hölder continuous solutions of the Boussinesq equations , 1999, Nagoya Mathematical Journal.

[22]  L. R. Scott,et al.  The Mathematical Theory of Finite Element Methods , 1994 .

[23]  Simon Tavener,et al.  A Posteriori Analysis and Adaptive Error Control for Multiscale Operator Decomposition Solution of Elliptic Systems I: Triangular Systems , 2008, SIAM J. Numer. Anal..

[24]  Vivette Girault,et al.  Finite Element Methods for Navier-Stokes Equations - Theory and Algorithms , 1986, Springer Series in Computational Mathematics.

[25]  Claes Johnson,et al.  Computational Differential Equations , 1996 .

[26]  M. Ainsworth,et al.  Some useful techniques for pointwise and local error estimates of the quantities of interest in the finite element approximation , 2000 .

[27]  Vivek Sarin,et al.  Domain Decomposition , 2011, Encyclopedia of Parallel Computing.

[28]  Dongho Chae,et al.  Generic Solvability of the Axisymmetric 3-D Euler Equations and the 2-D Boussinesq Equations , 1999 .

[29]  Graham F. Carey,et al.  Derivative calculation from finite element solutions , 1982 .

[30]  Mats G. Larson,et al.  Adaptive finite element approximation of coupled flow and transport problems with applications in heat transfer , 2008 .

[31]  Donald Estep,et al.  A posteriori error estimation of approximate boundary fluxes , 2007 .

[32]  Thomas Y. Hou,et al.  GLOBAL WELL-POSEDNESS OF THE VISCOUS BOUSSINESQ EQUATIONS , 2004 .

[33]  Graham F. Carey,et al.  Approximate boundary-flux calculations☆ , 1985 .

[34]  John N. Shadid,et al.  An A Posteriori-A Priori Analysis of Multiscale Operator Splitting , 2008, SIAM J. Numer. Anal..

[35]  Mats G. Larson,et al.  Adaptive finite element approximation of multiphysics problems , 2007 .

[36]  Roy D. Williams,et al.  Estimating the Error of Numerical Solutions of Systems of Reaction-Diffusion Equations , 2000 .

[37]  J. Pasciak,et al.  The Construction of Preconditioners for Elliptic Problems by Substructuring. , 2010 .