Do imaging techniques add real value to the development of better post-Li-ion batteries?

Imaging techniques are increasingly used to study Li-ion batteries and, in particular, post-Li-ion batteries such as Li–S batteries, Na-ion batteries, and all-solid-state batteries. Results that appear impressive owing to good image design and reconstruction are frequently published in high-impact-factor journals; however, questions have arisen about the added value of such results and the information they reveal about reaction mechanisms occurring in batteries during operation and/or degradation. We present here a review of imaging techniques and the knowledge acquired from these techniques for three systems: Li–S batteries, Na-ion batteries, and all-solid-state batteries. There are always advantages and disadvantages associated with these techniques, but beam damage remains the bottleneck to characterization. This factor needs to be considered seriously in order to obtain valuable outcomes that will enable improvements of battery performance and lifetime.

[1]  Paul R. Shearing,et al.  Exploring 3D microstructural evolution in Li-Sulfur battery electrodes using in-situ X-ray tomography , 2016, Scientific Reports.

[2]  S. Risse,et al.  Binder-free carbon monolith cathode material for operando investigation of high performance lithium-sulfur batteries with X-ray radiography , 2017 .

[3]  Sylvie Grugeon,et al.  New concepts for the search of better electrode materials for rechargeable lithium batteries , 2005 .

[4]  C. Villevieille,et al.  Direct observation of lithium polysulfides in lithium–sulfur batteries using operando X-ray diffraction , 2017, Nature Energy.

[5]  D. Weber,et al.  (Electro)chemical expansion during cycling: monitoring the pressure changes in operating solid-state lithium batteries , 2017 .

[6]  Q. Ma,et al.  Li7La3Zr2O12 Interface Modification for Li Dendrite Prevention. , 2016, ACS applied materials & interfaces.

[7]  Jianbo Wang,et al.  In situ observation of the sodiation process in CuO nanowires. , 2015, Chemical communications.

[8]  Guangyuan Zheng,et al.  Understanding the role of different conductive polymers in improving the nanostructured sulfur cathode performance. , 2013, Nano letters.

[9]  E. Giannelis,et al.  Design Principles for Optimum Performance of Porous Carbons in Lithium–Sulfur Batteries , 2016 .

[10]  X. Sun,et al.  Morphology-dependent performance of nanostructured Ni3S2/Ni anode electrodes for high performance sodium ion batteries , 2016 .

[11]  Chongmin Wang,et al.  In situ transmission electron microscopy and spectroscopy studies of rechargeable batteries under dynamic operating conditions: A retrospective and perspective view , 2015 .

[12]  Yi Cui,et al.  Improving the performance of lithium-sulfur batteries by conductive polymer coating. , 2011, ACS nano.

[13]  Ji‐Guang Zhang,et al.  Lithium metal anodes for rechargeable batteries , 2014 .

[14]  Shinichi Komaba,et al.  Research development on sodium-ion batteries. , 2014, Chemical reviews.

[15]  Céline Barchasz,et al.  New insight into the working mechanism of lithium-sulfur batteries: in situ and operando X-ray diffraction characterization. , 2013, Chemical communications.

[16]  P. Novák,et al.  Surface/Interface Study on Full xLi2MnO3·(1 − x)LiMO2 (M = Ni, Mn, Co)/Graphite Cells , 2015 .

[17]  S. Passerini,et al.  Ionic Liquid Electrolytes for Li–Air Batteries: Lithium Metal Cycling , 2014, International journal of molecular sciences.

[18]  B. Lucht,et al.  Surface phenomena of high energy Li(Ni 1/3 Co 1/3 Mn 1/3 )O 2 /graphite cells at high temperature and high cutoff voltages , 2014 .

[19]  Kazuma Gotoh,et al.  Electrochemical Na Insertion and Solid Electrolyte Interphase for Hard‐Carbon Electrodes and Application to Na‐Ion Batteries , 2011 .

[20]  Weidong Zhou,et al.  Polydopamine-coated, nitrogen-doped, hollow carbon-sulfur double-layered core-shell structure for improving lithium-sulfur batteries. , 2014, Nano letters.

[21]  J. Janek,et al.  Pitfalls in the characterization of sulfur/carbon nanocomposite materials for lithium–sulfur batteries , 2014 .

[22]  Kai Cui,et al.  Activation with Li enables facile sodium storage in germanium. , 2014, Nano letters.

[23]  Doron Aurbach,et al.  Studies of Li and Mn-Rich Lix[MnNiCo]O2 Electrodes: Electrochemical Performance, Structure, and the Effect of the Aluminum Fluoride Coating , 2013 .

[24]  H. Dai,et al.  Graphene-wrapped sulfur particles as a rechargeable lithium-sulfur battery cathode material with high capacity and cycling stability. , 2011, Nano letters.

[25]  K. Amine,et al.  Interpreting the structural and electrochemical complexity of 0.5Li2MnO3·0.5LiMO2 electrodes for lithium batteries (M = Mn0.5−xNi0.5−xCo2x, 0 ≤x≤ 0.5) , 2007 .

[26]  Xiqian Yu,et al.  Insight into the Atomic Structure of High-Voltage Spinel LiNi0.5Mn1.5O4 Cathode Material in the First Cycle , 2015 .

[27]  E. Maire,et al.  Multiscale morphological characterization of process induced heterogeneities in blended positive electrodes for lithium–ion batteries , 2017, Journal of Materials Science.

[28]  M. Armand,et al.  Building better batteries , 2008, Nature.

[29]  Zhijun Ling,et al.  Polymer lithium cells with sulfur composites as cathode materials , 2003 .

[30]  Y. Matsuda,et al.  Effect of organic additives in electrolyte solutions on lithium electrode behavior , 1999 .

[31]  John T. Vaughey,et al.  Li{sub2}MnO{sub3}-stabilized LiMO{sub2} (M=Mn, Ni, Co) electrodes for high energy lithium-ion batteries , 2007 .

[32]  Yingchao Yu,et al.  Yolk-shell structure of polyaniline-coated sulfur for lithium-sulfur batteries. , 2013, Journal of the American Chemical Society.

[33]  Doron Aurbach,et al.  Factors Which Limit the Cycle Life of Rechargeable Lithium (Metal) Batteries , 2000 .

[34]  Y. Chiang,et al.  Accommodating High Transformation Strains in Battery Electrodes via the Formation of Nanoscale Intermediate Phases: Operando Investigation of Olivine NaFePO4. , 2017, Nano letters.

[35]  Yayuan Liu,et al.  Layered reduced graphene oxide with nanoscale interlayer gaps as a stable host for lithium metal anodes. , 2016, Nature nanotechnology.

[36]  Kyu-Tae Lee,et al.  Inhibiting the shuttle effect in lithium–sulfur batteries using a layer-by-layer assembled ion-permselective separator , 2014 .

[37]  Satoshi Hori,et al.  High-power all-solid-state batteries using sulfide superionic conductors , 2016, Nature Energy.

[38]  Yuriy V. Mikhaylik,et al.  Polysulfide Shuttle Study in the Li/S Battery System , 2004 .

[39]  D. Wheeler,et al.  Three‐Phase Multiscale Modeling of a LiCoO2 Cathode: Combining the Advantages of FIB–SEM Imaging and X‐Ray Tomography , 2015 .

[40]  Shaoming Huang,et al.  Porous carbon nanotubes etched by water steam for high-rate large-capacity lithium–sulfur batteries , 2014 .

[41]  Jun Wang,et al.  Probing three-dimensional sodiation–desodiation equilibrium in sodium-ion batteries by in situ hard X-ray nanotomography , 2015, Nature Communications.

[42]  A. Hayashi,et al.  Raman imaging for LiCoO 2 composite positive electrodes in all-solid-state lithium batteries using Li 2 S-P 2 S 5 solid electrolytes , 2016 .

[43]  M. Ishikawa,et al.  Electrochemical control of a Li metal anode interface: improvement of Li cyclability by inorganic additives compatible with electrolytes☆ , 1999 .

[44]  A. Kuwabara,et al.  Why is sodium-intercalated graphite unstable? , 2017 .

[45]  C. Liang,et al.  Hierarchically Structured Sulfur/Carbon Nanocomposite Material for High-Energy Lithium Battery , 2009 .

[46]  Hong‐Jie Peng,et al.  Ionic shield for polysulfides towards highly-stable lithium–sulfur batteries , 2014 .

[47]  Mihui Park,et al.  Recent Developments of the Lithium Metal Anode for Rechargeable Non‐Aqueous Batteries , 2016 .

[48]  C. Villevieille,et al.  MnSn2 negative electrodes for Na-ion batteries: a conversion-based reaction dissected , 2016 .

[49]  Wenzhi Li,et al.  In situ transmission electron microscopy observation of electrochemical sodiation of individual Co₉S₈-filled carbon nanotubes. , 2014, ACS nano.

[50]  Zaiping Guo,et al.  Investigation of discharge reaction mechanism of lithium|liquid electrolyte|sulfur battery , 2009 .

[51]  L. Nazar,et al.  A highly ordered nanostructured carbon-sulphur cathode for lithium-sulphur batteries. , 2009, Nature materials.

[52]  Ji‐Guang Zhang,et al.  New Insights on the Structure of Electrochemically Deposited Lithium Metal and Its Solid Electrolyte Interphases via Cryogenic TEM. , 2017, Nano letters.

[53]  C. Grey,et al.  Effects of Relaxation on Conversion Negative Electrode Materials for Li-Ion Batteries: A Study of TiSnSb Using 119Sn Mössbauer and 7Li MAS NMR Spectroscopies , 2016 .

[54]  M. Armand,et al.  Issues and challenges facing rechargeable lithium batteries , 2001, Nature.

[55]  Kevin N. Wood,et al.  Dendrites and Pits: Untangling the Complex Behavior of Lithium Metal Anodes through Operando Video Microscopy , 2016, ACS central science.

[56]  D. Muller,et al.  Characterization of Sulfur and Nanostructured Sulfur Battery Cathodes in Electron Microscopy Without Sublimation Artifacts , 2017, Microscopy and Microanalysis.

[57]  Arumugam Manthiram,et al.  A new approach to improve cycle performance of rechargeable lithium-sulfur batteries by inserting a free-standing MWCNT interlayer. , 2012, Chemical communications.

[58]  Jun Lu,et al.  Ultrafast and Highly Reversible Sodium Storage in Zinc‐Antimony Intermetallic Nanomaterials , 2016 .

[59]  Robert A. Huggins,et al.  Lithium alloy negative electrodes , 1999 .

[60]  H. Ahn,et al.  Long-term cycling stability of porous Sn anode for sodium-ion batteries , 2016 .

[61]  J. Xie,et al.  Improved Na-storage cycling of amorphous-carbon-sheathed Ni3S2 arrays and investigation by in situ TEM characterization , 2017 .

[62]  U. Stimming,et al.  Intercalation of solvated Na-ions into graphite , 2017 .

[63]  Roland Zengerle,et al.  Study of the Mechanisms of Internal Short Circuit in a Li/Li Cell by Synchrotron X-ray Phase Contrast Tomography , 2017 .

[64]  M. Di Michiel,et al.  Chemical Structures of Specific Sodium Ion Battery Components Determined by Operando Pair Distribution Function and X-ray Diffraction Computed Tomography , 2017 .

[65]  D Carlier,et al.  Electrochemical investigation of the P2–NaxCoO2 phase diagram. , 2011, Nature materials.

[66]  K. Kubota,et al.  Review-Practical Issues and Future Perspective for Na-Ion Batteries , 2015 .

[67]  Liping Wang,et al.  In situ atomic-scale observation of reversible sodium ions migration in layered metal dichalcogenide SnS2 nanostructures , 2017 .

[68]  Claire Villevieille,et al.  Novel electrochemical cell designed for operando techniques and impedance studies , 2014 .

[69]  Stefan Kaskel,et al.  High capacity micro-mesoporous carbon–sulfur nanocomposite cathodes with enhanced cycling stability prepared by a solvent-free procedure , 2013 .

[70]  S. Risse,et al.  Multidimensional operando analysis of macroscopic structure evolution in lithium sulfur cells by X-ray radiography. , 2016, Physical chemistry chemical physics : PCCP.

[71]  Yanbin Shen,et al.  In operando observation of sodium ion diffusion in a layered sodium transition metal oxide cathode material, P2 NaxCo0.7Mn0.3O2. , 2017, Chemical communications.

[72]  Yayuan Liu,et al.  Lithium-coated polymeric matrix as a minimum volume-change and dendrite-free lithium metal anode , 2016, Nature Communications.

[73]  C. Villevieille,et al.  Elucidation of the reaction mechanisms of isostructural FeSn2 and CoSn2 negative electrodes for Na-ion batteries , 2017 .

[74]  Xinping Ai,et al.  High-Performance Olivine NaFePO4 Microsphere Cathode Synthesized by Aqueous Electrochemical Displacement Method for Sodium Ion Batteries. , 2015, ACS applied materials & interfaces.

[75]  M. Malac,et al.  Radiation damage in the TEM and SEM. , 2004, Micron.

[76]  Liangbing Hu,et al.  Determination of mechanical properties of the SEI in sodium ion batteries via colloidal probe microscopy , 2013 .

[77]  Dean J. Miller,et al.  In Operando XRD and TXM Study on the Metastable Structure Change of NaNi1/3Fe1/3Mn1/3O2 under Electrochemical Sodium‐Ion Intercalation , 2016 .

[78]  Christian Masquelier,et al.  Structural and electrochemical studies of novel Na7V3Al(P2O7)4(PO4) and Na7V2Al2(P2O7)4(PO4) high-voltage cathode materials for Na-ion batteries , 2017 .

[79]  C. B. Carter,et al.  Coupling In Situ TEM and Ex Situ Analysis to Understand Heterogeneous Sodiation of Antimony. , 2015, Nano letters.

[80]  J. L. Amo,et al.  Structural evolution during sodium deintercalation/intercalation in Na2/3[Fe1/2Mn1/2]O2 , 2015 .

[81]  Céline Barchasz,et al.  Lithium/Sulfur Batteries Upon Cycling: Structural Modifications and Species Quantification by In Situ and Operando X‐Ray Diffraction Spectroscopy , 2015 .

[82]  Feng Li,et al.  A microporous-mesoporous carbon with graphitic structure for a high-rate stable sulfur cathode in carbonate solvent-based Li-S batteries. , 2012, Physical chemistry chemical physics : PCCP.

[83]  Selena M. Russell,et al.  Atomic force microscopy studies on molybdenum disulfide flakes as sodium-ion anodes. , 2015, Nano letters.

[84]  C. Love,et al.  Internal Morphologies of Cycled Li-Metal Electrodes Investigated by Nano-Scale Resolution X-ray Computed Tomography. , 2017, ACS applied materials & interfaces.

[85]  Jiaqi Huang,et al.  Composite Cathodes Containing SWCNT@S Coaxial Nanocables: Facile Synthesis, Surface Modification, and Enhanced Performance for Li‐Ion Storage , 2013 .

[86]  Hyunchul Kim,et al.  Sodium intercalation chemistry in graphite , 2015 .

[87]  S. Passerini,et al.  Development and Characterization of High-Performance Sodium-Ion Cells based on Layered Oxide and Hard Carbon , 2016 .

[88]  Hundred-micron-sized all-solid-state Li secondary battery arrays embedded in a Si substrate , 2002 .

[89]  M. Winter,et al.  Multi-Scale Correlative Tomography of a Li-Ion Battery Composite Cathode , 2016, Scientific Reports.

[90]  P. Hagenmuller,et al.  Structural classification and properties of the layered oxides , 1980 .

[91]  A. Manthiram,et al.  Low-cost, porous carbon current collector with high sulfur loading for lithium–sulfur batteries , 2014 .

[92]  Y. Liu,et al.  In situ transmission electron microscopy study of electrochemical sodiation and potassiation of carbon nanofibers. , 2014, Nano letters.

[93]  Christian Masquelier,et al.  Polyanionic (phosphates, silicates, sulfates) frameworks as electrode materials for rechargeable Li (or Na) batteries. , 2013, Chemical reviews.

[94]  Byung Gon Kim,et al.  A Lithium‐Sulfur Battery with a High Areal Energy Density , 2014 .

[95]  Jusef Hassoun,et al.  A comparative study of layered transition metal oxide cathodes for application in sodium-ion battery. , 2015, ACS applied materials & interfaces.

[96]  Philipp Adelhelm,et al.  A rechargeable room-temperature sodium superoxide (NaO2) battery. , 2013, Nature materials.

[97]  Doron Aurbach,et al.  Morphological and Structural Studies of Composite Sulfur Electrodes upon Cycling by HRTEM, AFM and Raman Spectroscopy , 2010 .

[98]  P. Novák,et al.  A metastable β-sulfur phase stabilized at room temperature during cycling of high efficiency carbon fibre–sulfur composites for Li–S batteries , 2013 .

[99]  Patrick Echlin,et al.  Low-Temperature Microscopy and Analysis , 1992, Springer US.

[100]  Pengjian Zuo,et al.  Unravelling the origin of irreversible capacity loss in NaNiO2 for high voltage sodium ion batteries , 2017 .

[101]  Fang Wang,et al.  A hierarchical micro/mesoporous carbon fiber/sulfur composite for high-performance lithium–sulfur batteries , 2016 .

[102]  Martin Winter,et al.  Electrochemical in situ investigations of SEI and dendrite formation on the lithium metal anode. , 2015, Physical chemistry chemical physics : PCCP.

[103]  K. Kang,et al.  A new high-energy cathode for a Na-ion battery with ultrahigh stability. , 2013, Journal of the American Chemical Society.

[104]  L. Stievano,et al.  Facile synthesis and long cycle life of SnSb as negative electrode material for Na-ion batteries , 2013 .

[105]  Guangyuan Zheng,et al.  A membrane-free lithium/polysulfide semi-liquid battery for large-scale energy storage , 2013 .

[106]  Erik J. Berg,et al.  Understanding the Interaction of the Carbonates and Binder in Na-Ion Batteries: A Combined Bulk and Surface Study , 2015 .

[107]  Liangbing Hu,et al.  Atomic-layer-deposition oxide nanoglue for sodium ion batteries. , 2014, Nano letters.

[108]  P. Novák,et al.  Operando Neutron Powder Diffraction Using Cylindrical Cell Design: The Case of LiNi0.5Mn1.5O4 vs Graphite , 2016 .

[109]  Doron Aurbach,et al.  The use of in situ techniques in R&D of Li and Mg rechargeable batteries , 2011 .

[110]  Xiaogang Zhang,et al.  Hierarchically porous carbon encapsulating sulfur as a superior cathode material for high performance lithium-sulfur batteries. , 2014, ACS applied materials & interfaces.

[111]  P. Novák,et al.  Taming the polysulphide shuttle in Li–S batteries by plasma-induced asymmetric functionalisation of the separator , 2015 .

[112]  Jou-Hyeon Ahn,et al.  Rechargeable lithium/sulfur battery with liquid electrolytes containing toluene as additive , 2008 .

[113]  Yaqin Huang,et al.  Structural change of the porous sulfur cathode using gelatin as a binder during discharge and charge , 2009 .

[114]  Masahiro Shimizu,et al.  Nb-doped rutile TiO₂: a potential anode material for Na-ion battery. , 2015, ACS applied materials & interfaces.

[115]  Maria Rosa Palacín,et al.  On the high and low temperature performances of Na-ion battery materials: Hard carbon as a case study , 2015 .

[116]  Wei Zhang,et al.  Biomass derived hard carbon used as a high performance anode material for sodium ion batteries , 2014 .

[117]  Erik J. Berg,et al.  Differential Electrochemical Mass Spectrometry Study of the Interface of xLi2MnO3·(1–x)LiMO2 (M = Ni, Co, and Mn) Material as a Positive Electrode in Li-Ion Batteries , 2014 .

[118]  S. Yao,et al.  Recent progress in rational design of anode materials for high-performance Na-ion batteries , 2017 .

[119]  Xiulei Ji,et al.  An Organic Pigment as a High‐Performance Cathode for Sodium‐Ion Batteries , 2014 .

[120]  Guangyuan Zheng,et al.  The synergetic effect of lithium polysulfide and lithium nitrate to prevent lithium dendrite growth , 2015, Nature Communications.

[121]  C. Villevieille,et al.  Impact of cobalt content in Na0.67MnxFeyCozO2 (x + y + z = 1), a cathode material for sodium ion batteries , 2017 .

[122]  C. Villevieille,et al.  Elucidation of reaction mechanisms of Ni 2 SnP in Li-ion and Na-ion systems , 2017 .

[123]  Lynden A Archer,et al.  Stable lithium electrodeposition in liquid and nanoporous solid electrolytes. , 2014, Nature materials.

[124]  H. Althues,et al.  Reduced polysulfide shuttle in lithium–sulfur batteries using Nafion-based separators , 2014 .

[125]  E. Giannelis,et al.  High-rate lithium–sulfur batteries enabled by hierarchical porous carbons synthesized via ice templation , 2015 .

[126]  C. Villevieille,et al.  CuSbS2 as a negative electrode material for sodium ion batteries , 2017 .

[127]  Glenn G. Amatucci,et al.  Synthesis and Characterization of Nanostructured 4.7 V Li x Mn1.5Ni0.5O4 Spinels for High-Power Lithium-Ion Batteries , 2006 .

[128]  Laure Monconduit,et al.  Better cycling performances of bulk Sb in Na-ion batteries compared to Li-ion systems: an unexpected electrochemical mechanism. , 2012, Journal of the American Chemical Society.

[129]  Xiaogang Zhang,et al.  Encapsulating sulfur into hierarchically ordered porous carbon as a high-performance cathode for lithium-sulfur batteries. , 2013, Chemistry.

[130]  Jung Tae Lee,et al.  In Situ TEM Observation of Electrochemical Lithiation of Sulfur Confined within Inner Cylindrical Pores of Carbon Nanotubes , 2015 .

[131]  Guangyuan Zheng,et al.  Interconnected hollow carbon nanospheres for stable lithium metal anodes. , 2014, Nature nanotechnology.

[132]  C. Villevieille,et al.  Electrode Engineering of Conversion-based Negative Electrodes for Na-ion Batteries. , 2015, Chimia.

[133]  Yuyan Shao,et al.  Probing the failure mechanism of SnO2 nanowires for sodium-ion batteries. , 2013, Nano letters.

[134]  D. Mitlin,et al.  Anodes for sodium ion batteries based on tin-germanium-antimony alloys. , 2014, ACS nano.

[135]  D. Aurbach,et al.  Crystal chemistry and valence determinations for Mn, Ni and Co oxides as cathode materials in Li batteries , 2014 .

[136]  Doron Aurbach,et al.  On the Surface Chemical Aspects of Very High Energy Density, Rechargeable Li–Sulfur Batteries , 2009 .

[137]  J. Goodenough,et al.  Tungsten Disulfide Catalysts Supported on a Carbon Cloth Interlayer for High Performance Li–S Battery , 2017 .

[138]  K. Kubota,et al.  Synthesis of hard carbon from argan shells for Na-ion batteries , 2017 .

[139]  K. Andreas Friedrich,et al.  In-situ X-ray diffraction studies of lithium-sulfur batteries , 2013 .

[140]  D. B. Nash Sulfur in vacuum: sublimation effects on frozen melts, and applications to Io's surface and torus , 1987 .

[141]  Kazunori Ozawa,et al.  Lithium-ion rechargeable batteries with LiCoO2 and carbon electrodes: the LiCoO2/C system , 1994 .

[142]  Guangyuan Zheng,et al.  Sulphur–TiO2 yolk–shell nanoarchitecture with internal void space for long-cycle lithium–sulphur batteries , 2013, Nature Communications.

[143]  Zonghai Chen,et al.  Insights into the Distinct Lithiation/Sodiation of Porous Cobalt Oxide by in Operando Synchrotron X-ray Techniques and Ab Initio Molecular Dynamics Simulations. , 2017, Nano letters.

[144]  Petr Novák,et al.  Advanced in situ methods for the characterization of practical electrodes in lithium-ion batteries , 2000 .

[145]  John T. Vaughey,et al.  Advances in manganese-oxide ‘composite’ electrodes for lithium-ion batteries , 2005 .

[146]  P. Biensan,et al.  Mechanisms Associated with the “Plateau” Observed at High Voltage for the Overlithiated Li1.12(Ni0.425Mn0.425Co0.15)0.88O2 System , 2008 .

[147]  Jou-Hyeon Ahn,et al.  Effects of carbon coating on the electrochemical properties of sulfur cathode for lithium/sulfur cell , 2008 .

[148]  Hyunhyub Ko,et al.  Carambola-shaped VO2 nanostructures: a binder-free air electrode for an aqueous Na–air battery , 2017 .

[149]  C. Fisher,et al.  Characterization of the interface between LiCoO2 and Li7La3Zr2O12 in an all-solid-state rechargeable lithium battery , 2011 .

[150]  Yunhao Lu,et al.  A promising cathode material of sodium iron–nickel hexacyanoferrate for sodium ion batteries , 2015 .

[151]  B. Polzin,et al.  Understanding Long-Term Cycling Performance of Li1.2Ni0.15Mn0.55Co0.1O2–Graphite Lithium-Ion Cells , 2013 .

[152]  Xinping Qiu,et al.  New insight into the discharge process of sulfur cathode by electrochemical impedance spectroscopy , 2009 .

[153]  Soo Min Hwang,et al.  Hierarchical urchin-shaped α-MnO 2 on graphene-coated carbon microfibers: a binder-free electrode for rechargeable aqueous Na–air battery , 2016 .

[154]  Xiaoling Li,et al.  High-performance Li–S battery cathode with catalyst-like carbon nanotube-MoP promoting polysulfide redox , 2017, Nano Research.

[155]  Xiaolin Liu,et al.  Hard Carbon Fibers Pyrolyzed from Wool as High-Performance Anode for Sodium-Ion Batteries , 2016 .

[156]  Xiaogang Han,et al.  Reactivation of dissolved polysulfides in Li–S batteries based on atomic layer deposition of Al2O3 in nanoporous carbon cloth , 2013 .

[157]  J. Janek,et al.  In operando x-ray tomography for next-generation batteries: a systematic approach to monitor reaction product distribution and transport processes , 2016 .

[158]  L. Lutz,et al.  The Role of the Electrode Surface in Na–Air Batteries: Insights in Electrochemical Product Formation and Chemical Growth of NaO2 , 2018 .

[159]  C. Liang,et al.  Foldable interpenetrated metal-organic frameworks/carbon nanotubes thin film for lithium–sulfur batteries , 2017, Nature Communications.

[160]  Wen Liu,et al.  Synthesis of flower-like copper sulfides microspheres as electrode materials for sodium secondary batteries , 2017 .

[161]  P. Novák,et al.  Influence of Conversion Material Morphology on Electrochemistry Studied with Operando X‐Ray Tomography and Diffraction , 2015, Advanced materials.

[162]  Hyunhyub Ko,et al.  Exploration of cobalt phosphate as a potential catalyst for rechargeable aqueous sodium-air battery , 2016 .

[163]  S. T. Senthilkumar,et al.  Three-dimensional SnS2 nanopetals for hybrid sodium-air batteries , 2017 .

[164]  A. Manthiram,et al.  A hierarchical carbonized paper with controllable thickness as a modulable interlayer system for high performance Li-S batteries. , 2014, Chemical communications.

[165]  A. J. Morris,et al.  Investigating Sodium Storage Mechanisms in Tin Anodes: A Combined Pair Distribution Function Analysis, Density Functional Theory, and Solid-State NMR Approach. , 2017, Journal of the American Chemical Society.

[166]  M. Herrmann,et al.  In operando Synchrotron XRD/XAS Investigation of Sodium Insertion into the Prussian Blue Analogue Cathode Material Na1.32Mn[Fe(CN)6]0.83·z H2O , 2016 .

[167]  Jang‐Yeon Hwang,et al.  Sodium-ion batteries: present and future. , 2017, Chemical Society reviews.

[168]  Martin Winter,et al.  Will advanced lithium-alloy anodes have a chance in lithium-ion batteries? , 1997 .

[169]  M. Di Michiel,et al.  Multiscale characterization of a lithium/sulfur battery by coupling operando X-ray tomography and spatially-resolved diffraction , 2017, Scientific Reports.

[170]  R. Zengerle,et al.  Degradation of Li/S Battery Electrodes On 3D Current Collectors Studied Using X-ray Phase Contrast Tomography , 2015, Scientific Reports.

[171]  P. Hagenmuller,et al.  Comportement electrochimique des phases NaxCoO2 , 1980 .

[172]  Michael F Toney,et al.  In Operando X-ray diffraction and transmission X-ray microscopy of lithium sulfur batteries. , 2012, Journal of the American Chemical Society.

[173]  Alok M. Tripathi,et al.  Visualization of Lithium Plating and Stripping via in Operando Transmission X-ray Microscopy , 2017 .

[174]  P. Novák,et al.  Performance-Enhancing Asymmetric Separator for Lithium-Sulfur Batteries. , 2016, ACS applied materials & interfaces.

[175]  Claire Villevieille,et al.  Rechargeable Batteries: Grasping for the Limits of Chemistry , 2015 .

[176]  Z. Fu,et al.  The Potential of Na–Air Batteries , 2017 .

[177]  V. Wood,et al.  Combining operando synchrotron X-ray tomographic microscopy and scanning X-ray diffraction to study lithium ion batteries , 2016, Scientific Reports.

[178]  Jia Ding,et al.  Tin and Tin Compounds for Sodium Ion Battery Anodes: Phase Transformations and Performance. , 2015, Accounts of chemical research.

[179]  M. Ishikawa,et al.  Characterization of the lithium-organic electrolyte interface containing inorganic and organic additives by in situ techniques , 1995 .

[180]  Lin Gu,et al.  Direct atomic-scale confirmation of three-phase storage mechanism in Li4Ti5O12 anodes for room-temperature sodium-ion batteries , 2013, Nature Communications.

[181]  P. Novák,et al.  Bulk and surface analyses of ageing of a 5V-NCM positive electrode material for lithium-ion batteries , 2014 .

[182]  A. Manthiram,et al.  Nano-cellular carbon current collectors with stable cyclability for Li–S batteries , 2013 .

[183]  Rachid Meziane,et al.  Single-ion BAB triblock copolymers as highly efficient electrolytes for lithium-metal batteries. , 2013, Nature materials.

[184]  Naixin Xu,et al.  A novel conductive polymer-sulfur composite cathode material for rechargeable lithium batteries , 2002 .