The continuous 1.5D terrain guarding problem: Discretization, optimal solutions, and PTAS

In the NP-hard continuous 1.5D Terrain Guarding Problem (TGP) we are given an $x$-monotone chain of line segments in $R^2$ (the terrain $T$), and ask for the minimum number of guards (located anywhere on $T$) required to guard all of $T$. We construct guard candidate and witness sets $G, W \subset T$ of polynomial size such that any feasible (optimal) guard cover $G^* \subseteq G$ for $W$ is also feasible (optimal) for the continuous TGP. This discretization allows us to: (1) settle NP-completeness for the continuous TGP; (2) provide a Polynomial Time Approximation Scheme (PTAS) for the continuous TGP using the PTAS for the discrete TGP by Gibson et al.; (3) formulate the continuous TGP as an Integer Linear Program (IP). Furthermore, we propose several filtering techniques reducing the size of our discretization, allowing us to devise an efficient IP-based algorithm that reliably provides optimal guard placements for terrains with up to $10^6$ vertices within minutes on a standard desktop computer.

[1]  D. T. Lee,et al.  Computational complexity of art gallery problems , 1986, IEEE Trans. Inf. Theory.

[2]  Sariel Har-Peled,et al.  Guarding galleries and terrains , 2002, Inf. Process. Lett..

[3]  James King,et al.  A 4-Approximation Algorithm for Guarding 1.5-Dimensional Terrains , 2006, LATIN.

[4]  Hans-Dietrich Hecker,et al.  Two NP-Hard Art-Gallery Problems for Ortho-Polygons , 1995, Math. Log. Q..

[5]  Sylvain Pion,et al.  A generic lazy evaluation scheme for exact geometric computations , 2006, Sci. Comput. Program..

[6]  Joseph O'Rourke,et al.  Some NP-hard polygon decomposition problems , 1983, IEEE Trans. Inf. Theory.

[7]  Khaled M. Elbassioni,et al.  Improved Approximations for Guarding 1.5-Dimensional Terrains , 2009, Algorithmica.

[8]  Cid C. de Souza,et al.  An exact algorithm for minimizing vertex guards on art galleries , 2011, Int. Trans. Oper. Res..

[9]  Kenneth L. Clarkson,et al.  Improved Approximation Algorithms for Geometric Set Cover , 2005, Discret. Comput. Geom..

[10]  J. Kahn,et al.  Traditional Galleries Require Fewer Watchmen , 1983 .

[11]  Sandeep Koranne,et al.  Boost C++ Libraries , 2011 .

[12]  Aldo Laurentini,et al.  Guarding the walls of an art gallery , 1999, The Visual Computer.

[13]  T. Shermer Recent Results in Art Galleries , 1992 .

[14]  Stephan Eidenbenz,et al.  Inapproximability Results for Guarding Polygons and Terrains , 2001, Algorithmica.

[15]  Maarten Löffler,et al.  Terrain visibility with multiple viewpoints , 2013, ISAAC.

[16]  Sándor P. Fekete,et al.  Exact solutions and bounds for general art gallery problems , 2010, JEAL.

[17]  Ali Mohades,et al.  A fixed-parameter algorithm for guarding 1.5D terrains , 2015, Theor. Comput. Sci..

[18]  Matthew J. Katz,et al.  On guarding the vertices of rectilinear domains , 2008, Comput. Geom..

[19]  Matt Gibson,et al.  Guarding Terrains via Local Search , 2014, J. Comput. Geom..

[20]  James King,et al.  Terrain guarding is NP-hard , 2010, SODA '10.

[21]  Cid C. de Souza,et al.  Engineering Art Galleries , 2014, Algorithm Engineering.

[22]  Pak Ching Li,et al.  Guarding Orthogonal Terrains , 2015, CCCG.

[23]  Kenneth L. Clarkson,et al.  Improved Approximation Algorithms for Geometric Set Cover , 2007, Discret. Comput. Geom..

[24]  Kyung-Yong Chwa,et al.  Guarding Art Galleries by Guarding Witnesses , 2006, Int. J. Comput. Geom. Appl..

[25]  Joseph S. B. Mitchell,et al.  A Constant-Factor Approximation Algorithm for Optimal 1.5D Terrain Guarding , 2007, SIAM J. Comput..

[26]  Goran Martinović,et al.  Efficient parallel implementations of approximation algorithms for guarding 1.5D terrains , 2015 .

[27]  Stephan Eidenbenz,et al.  Approximation algorithms for terrain guarding , 2002, Inf. Process. Lett..

[28]  J. O'Rourke Art gallery theorems and algorithms , 1987 .

[29]  Sándor P. Fekete,et al.  Facets for Art Gallery Problems , 2013, Algorithmica.

[30]  Steve Fisk,et al.  A short proof of Chvátal's Watchman Theorem , 1978, J. Comb. Theory, Ser. B.

[31]  James A. King Guarding problems and geometric split trees , 2011 .

[32]  Alexander Kröller,et al.  Efficient Computation of Visibility Polygons , 2014, ArXiv.

[33]  Stephan Friedrichs,et al.  Algorithms for art gallery illumination , 2017, J. Glob. Optim..

[34]  Stephan Friedrichs,et al.  Exact solutions for the continuous 1.5D Terrain Guarding Problem , 2015, EuroCG 2015.

[35]  V. Chvátal A combinatorial theorem in plane geometry , 1975 .

[36]  Stephan Friedrichs,et al.  A PTAS for the Continuous 1.5D Terrain Guarding Problem , 2014, CCCG.