Density functional study of AunCu (n = 1–7) clusters

The possible stable geometrical configurations and the relative stabilities of the lowest-lying isomers of copper-doped gold clusters, AunCu (n = 1–7), are investigated using the density functional theory. Several low-lying isomers are determined. The results indicate that the ground-state AunCu clusters have planar structures for n = 1–7. The stability trend of the AunCu clusters (n = 1–7), shows that odd-numbered AunCu clusters are more stable than the neighbouring even-numbered ones, thereby indicating the Au5Cu clusters are magic cluster with high chemical stability.

[1]  Yongfang Zhao,et al.  Ab initio study of the structure and stability of MnTln (M = Cu, Ag, Au; n = 1, 2) clusters , 2007 .

[2]  Mao Hua-ping,et al.  Density functional study on structural and electronic properties of bimetallic gold–yttrium clusters: comparison with pure gold and yttrium clusters , 2008 .

[3]  Can Xu,et al.  Nonlinear optical properties of Aun−mMm (M = Ag, Cu; m = 1, 2) clusters , 2009 .

[4]  Parr,et al.  Development of the Colle-Salvetti correlation-energy formula into a functional of the electron density. , 1988, Physical review. B, Condensed matter.

[5]  Yang Wang,et al.  Geometric, electronic, and bonding properties of AuNM (N = 1-7, M = Ni, Pd, Pt) clusters. , 2005, The Journal of chemical physics.

[6]  Yongfang Zhao,et al.  An ab initio study of M2Te (M = Cu, Ag, Au) systems , 2002 .

[7]  F. Despa,et al.  Stability effects of AunXm+ (X=Cu, Al, Y, In) clusters , 1999 .

[8]  Li Xinying,et al.  A density-functional study of nickel/aluminum microclusters , 2007 .

[9]  G. Bishea,et al.  The ground state and excited d‐hole states of CuAu , 1991 .

[10]  W. Hongyan,et al.  Geometry and electronic properties of bimetallic Au n Y( n =1—9) clusters , 2006 .

[11]  Z. J. Wu,et al.  Theoretical study of transition metal dimer AuM (M = 3d, 4d, 5d element) , 2005 .

[12]  X. Kuang,et al.  First-principle study of AunFe (n = 1-7) clusters , 2009 .

[13]  Feng Xiao-juan,et al.  Density functional study of Al-doped Au clusters , 2009 .

[14]  I. Billas,et al.  Bonding character of bimetallic clusters AunXm(X=Al, In, Cs) , 1999 .

[15]  H. Schwarz,et al.  Additivity effects in the reactivities of bimetallic cluster ions PtmAun+. , 2003, Chemphyschem : a European journal of chemical physics and physical chemistry.

[16]  A. Becke,et al.  Density-functional exchange-energy approximation with correct asymptotic behavior. , 1988, Physical review. A, General physics.

[17]  R. Martin,et al.  Ab initio absorption spectra of Al n (n=2-13) clusters , 2003 .

[18]  W. R. Wadt,et al.  Ab initio effective core potentials for molecular calculations. Potentials for main group elements Na to Bi , 1985 .

[19]  R. Zope,et al.  Ground-state geometries and stability of impurity doped clusters: Li n Be and Li n Mg (n=1-12) , 2000 .

[20]  U. Landman,et al.  Structural, electronic, and impurity-doping effects in nanoscale chemistry: supported gold nanoclusters. , 2003, Angewandte Chemie.

[21]  Lai‐Sheng Wang,et al.  Observation of all-metal aromatic molecules. , 2001, Science.

[22]  G. Bishea,et al.  Spectroscopic studies of jet‐cooled AgAu and Au2 , 1991 .

[23]  M. Morse Clusters of transition-metal atoms , 1986 .

[24]  Wenjian Liu,et al.  Benchmark four-component relativistic density functional calculations on Cu2, Ag2, and Au2 , 2005 .

[25]  R. Deka,et al.  Structural and electronic properties of stable Aun (n = 2–13) clusters: A density functional study , 2008 .

[26]  K. Koyasu,et al.  Photoelectron spectroscopy of binary Au cluster anions with a doped metal atom: AunM− (n = 2–7), M = Pd, Ni, Zn, Cu, and Mg , 2006 .

[27]  H. Schaefer,et al.  Structures and electronic properties of AUn-1Cu and AUn (n ≤ 9) clusters , 2007 .