On the convergence of finite element solutions to the interface problem for the Stokes system

The Stokes system with a discontinuous coefficient (Stokes interface problem) and its finite element approximations are considered. We firstly show a general error estimate. To derive explicit convergence rates, we introduce some appropriate assumptions on the regularity of exact solutions and on a geometric condition for the triangulation. We mainly deal with the MINI element approximation and then consider P1-iso-P2/P1 element approximation. Results are expected to give an instructive remark in numerical analysis for two-phase flow problems.

[1]  Vivette Girault,et al.  Finite Element Methods for Navier-Stokes Equations - Theory and Algorithms , 1986, Springer Series in Computational Mathematics.

[2]  James H. Bramble,et al.  A finite element method for interface problems in domains with smooth boundaries and interfaces , 1996, Adv. Comput. Math..

[3]  Norikazu Saito,et al.  Flux-free Finite Element Method with Lagrange Multipliers for Two-fluid Flows , 2007, J. Sci. Comput..

[4]  A. Ženíšek,et al.  Nonlinear elliptic and evolution problems and their finite element approximations , 1990 .

[5]  Masahisa Tabata Uniform solvability of finite element solutions in approximate domains , 2001 .

[6]  R. Kellogg,et al.  A regularity result for the Stokes problem in a convex polygon , 1976 .

[7]  Michel Fortin,et al.  Mixed and Hybrid Finite Element Methods , 2011, Springer Series in Computational Mathematics.

[8]  Alexander Ženíšek The finite element method for nonlinear elliptic equations with discontinuous coefficients , 1990 .

[9]  Maxim A. Olshanskii,et al.  A STOKES INTERFACE PROBLEM: STABILITY, FINITE ELEMENT ANALYSIS AND A ROBUST SOLVER , 2004 .

[10]  Miloslav Feistauer,et al.  On the finite element approximation of functions with noninteger derivatives , 1989 .

[11]  Christine Bernardi,et al.  Methodes d'elements finis mixtes pour les equations de stokes et de Navier-Stokes dans un polygone non convexe , 1981 .

[12]  P. Grisvard Singularities in Boundary Value Problems , 1992 .

[13]  A. Reusken,et al.  A finite element based level set method for two-phase incompressible flows , 2006 .

[14]  Miloslav Feistauer,et al.  Finite element approximation of nonlinear elliptic problems with discontinuous coefficients , 1989 .

[15]  Alfio Quarteroni,et al.  Domain Decomposition Methods for Partial Differential Equations , 1999 .

[16]  J. Zou,et al.  Finite element methods and their convergence for elliptic and parabolic interface problems , 1998 .

[17]  Yoshihiro Shibata,et al.  On a resolvent estimate of the interface problem for the Stokes system in a bounded domain , 2001 .

[18]  B. Maury,et al.  One time‐step finite element discretization of the equation of motion of two‐fluid flows , 2006 .

[19]  W. D. Evans,et al.  PARTIAL DIFFERENTIAL EQUATIONS , 1941 .

[20]  J. Lions,et al.  Problèmes aux limites non homogènes et applications , 1968 .

[21]  M. Petzoldt Regularity Results for Laplace Interface Problems in Two Dimensions , 2001 .

[22]  Ivo Babuska,et al.  The finite element method for elliptic equations with discontinuous coefficients , 1970, Computing.