Formal systems of fuzzy logic and their fragments

Abstract Formal systems of fuzzy logic (including the well-known Łukasiewicz and Godel–Dummett infinite-valued logics) are well-established logical systems and respected members of the broad family of the so-called substructural logics closely related to the famous logic BCK. The study of fragments of logical systems is an important issue of research in any class of non-classical logics. Here we study the fragments of nine prominent fuzzy logics to all sublanguages containing implication. However, the results achieved in the paper for those nine logics are usually corollaries of theorems with much wider scope of applicability. In particular, we show how many of these fragments are really distinct and we find axiomatic systems for most of them. In fact, we construct strongly separable axiomatic systems for eight of our nine logics. We also fully answer the question for which of the studied fragments the corresponding class of algebras forms a variety. Finally, we solve the problem how to axiomatize predicate versions of logics without the lattice disjunction (an essential connective in the usual axiomatic system of fuzzy predicate logics).

[1]  Isidore Fleischer,et al.  Every BCK-algebra is a set of residuables in an integral pomonoid , 1988 .

[2]  N. Campbell Formal Logic. , 1931, Nature.

[3]  Franco Montagna,et al.  Distinguished algebraic semantics for t-norm based fuzzy logics: Methods and algebraic equivalencies , 2009, Ann. Pure Appl. Log..

[4]  H. Rasiowa An Algebraic Approach To Non Classical Logics , 1974 .

[5]  Petr Hájek,et al.  Basic fuzzy logic and BL-algebras , 1998, Soft Comput..

[6]  San-Min Wang,et al.  Undefinability of min-conjunction in MTL , 2006, Fuzzy Sets Syst..

[7]  Marek Palasinski Some Remarks on BCK-Algebras , 1980 .

[8]  K. Iseki,et al.  ON AXIOM SYSTEMS OF PROPOSITIONAL CALCULI XIV , 1966 .

[9]  C. J. Van Alten,et al.  Representable Biresiduated Lattices , 2002 .

[10]  San-Min Wang,et al.  Solutions to Cintula's open problems , 2006, Fuzzy Sets Syst..

[11]  Angus Macintyre,et al.  Trends in Logic , 2001 .

[12]  D. Gabbay,et al.  Proof Theory for Fuzzy Logics , 2008 .

[13]  Hiroakira Ono,et al.  Logics without the contraction rule , 1985, Journal of Symbolic Logic.

[14]  A. Wronski BCK-algebras do not form a variety , 1983 .

[15]  Petr Cintula,et al.  Weakly Implicative (Fuzzy) Logics I: Basic Properties , 2006, Arch. Math. Log..

[16]  Isidore Fleischer Subdirect products of totally ordered BCK-algebras , 1987 .

[17]  James G. Raftery,et al.  Varieties of Commutative Residuated Integral Pomonoids and Their Residuation Subreducts , 1997 .

[18]  Franco Montagna,et al.  Basic Hoops: an Algebraic Study of Continuous t-norms , 2007, Stud Logica.

[19]  K. Iseki An introduction to the theory of BCK-algebra , 1978 .

[20]  Franco Montagna,et al.  A Proof of Standard Completeness for Esteva and Godo's Logic MTL , 2002, Stud Logica.

[21]  Lluis Godo,et al.  Monoidal t-norm based logic: towards a logic for left-continuous t-norms , 2001, Fuzzy Sets Syst..

[22]  Michael Dummett,et al.  A propositional calculus with denumerable matrix , 1959, Journal of Symbolic Logic (JSL).

[23]  Franco Montagna,et al.  On Weakly Cancellative Fuzzy Logics , 2006, J. Log. Comput..

[24]  Petr Hájek,et al.  Basic fuzzy logic and BL-algebras II , 1998, Soft Comput..

[25]  C. Tsinakis,et al.  Ordered algebraic structures , 1985 .

[26]  Tomasz Kowalski A Syntactic Proof of a Conjecture of Andrzej Wronski , 1994, Reports Math. Log..

[27]  Yuichi Komori The Separation Theorem of the X_0-Valued Lukasiewicz Propositional Logic , 1978 .

[28]  Rostislav Horcík Standard completeness theorem for ΠMTL , 2005, Arch. Math. Log..

[29]  James G. Raftery,et al.  Adding Involution to Residuated Structures , 2004, Stud Logica.

[30]  K. Evans,et al.  Totally Ordered Commutative Monoids , 2001 .

[31]  Petr Hájek,et al.  A non-arithmetical Gödel logic , 2005, Log. J. IGPL.

[32]  Arnon Avron,et al.  A constructive analysis of RM , 1987, Journal of Symbolic Logic.

[33]  Anatolij Dvurečenskij,et al.  Algebras on subintervals of BL-algebras, pseudo BL-algebras and bounded residuated $\ell $-monoids , 2006 .

[34]  R. L. Vaught Kochen Simon. Completeness of algebraic systems in higher order calculi. Summaries of talks presented at the Summer Institute for Symbolic Logic, Cornell University, 1957 , 2nd edn., Communications Research Division, Institute for Defense Analyses, Princeton, N.J., 1960, pp. 370–376. , 1962 .

[35]  Vítezslav Svejdar,et al.  Note on inter-expressibility of logical connectives in finitely-valued Gödel-Dummett logics , 2006, Soft Comput..

[36]  Franco Montagna,et al.  On the predicate logics of continuous t-norm BL-algebras , 2005, Arch. Math. Log..

[37]  Dov M. Gabbay,et al.  Lukasiewicz Logic: From Proof Systems To Logic Programming , 2005, Log. J. IGPL.

[38]  C. A. Meredith,et al.  Calculi of Pure Strict Implication , 1969 .

[39]  K. Brown,et al.  Graduate Texts in Mathematics , 1982 .

[40]  A. Iorgulescu SOME DIRECT ASCENDENTS OF WAJSBERG AND MV ALGEBRAS , 2003 .

[41]  Ryszard Wójcicki,et al.  Theory of Logical Calculi , 1988 .

[42]  Petr Hájek,et al.  Observations on the monoidal t-norm logic , 2002, Fuzzy Sets Syst..

[43]  Franco Montagna,et al.  Hoops and Fuzzy Logic , 2003, J. Log. Comput..

[44]  Petr Hájek,et al.  Residuated fuzzy logics with an involutive negation , 2000, Arch. Math. Log..

[45]  Petr Hájek,et al.  Metamathematics of Fuzzy Logic , 1998, Trends in Logic.

[46]  Antonio J. Rodríguez Salas,et al.  Linearization of the BCK-logic , 2000, Stud Logica.

[47]  K. Iseki,et al.  AN INTRODUCTION TO THE THEORY OF THE BCK-ALGEBRAS , 1978 .

[48]  Petr Hájek,et al.  A complete many-valued logic with product-conjunction , 1996, Arch. Math. Log..

[49]  Stanley Burris,et al.  A course in universal algebra , 1981, Graduate texts in mathematics.

[50]  Petr Cintula,et al.  Fuzzy logics as the logics of chains , 2006, Fuzzy Sets Syst..

[51]  R. Mesiar,et al.  Triangular norms - basic properties and representation theorems , 2000 .

[52]  Franco Montagna,et al.  On the Standard and Rational Completeness of some Axiomatic Extensions of the Monoidal T-norm Logic , 2002, Stud Logica.

[53]  R. Sikorski,et al.  The mathematics of metamathematics , 1963 .

[54]  Willem J. Blok,et al.  Memoirs of the American Mathematical Society , 1989 .

[55]  Àngel García-Cerdaña,et al.  On three implication-less fragments of t-norm based fuzzy logics , 2007, Fuzzy Sets Syst..

[56]  C. Tsinakis,et al.  A Survey of Residuated Lattices , 2002 .