The Capacity of Private Information Retrieval With Private Side Information Under Storage Constraints

We consider the problem of private information retrieval (PIR) of a single message out of <inline-formula> <tex-math notation="LaTeX">$K$ </tex-math></inline-formula> messages from <inline-formula> <tex-math notation="LaTeX">$N$ </tex-math></inline-formula> replicated and non-colluding databases where a cache-enabled user (retriever) of cache-size <inline-formula> <tex-math notation="LaTeX">$S$ </tex-math></inline-formula> possesses side information in the form of uncoded portions of the messages where the message identities are unknown to the databases. The identities of these side information messages need to be kept private from the databases, i.e., we consider PIR with private side information (PSI). We characterize the optimal normalized download cost for this PIR-PSI problem under the storage constraint <inline-formula> <tex-math notation="LaTeX">$S$ </tex-math></inline-formula> as <inline-formula> <tex-math notation="LaTeX">$D^{*}=1+\frac {1}{N}+\frac {1}{N^{2}}+ {\dots }+\frac {1}{N^{K-1-M}}+ \frac {1-r_{M}}{N^{K-M}}+\frac {1-r_{M-1}}{N^{K-M+1}}+ {\dots }+\frac {1-r_{1}}{N^{K-1}}$ </tex-math></inline-formula>, where <inline-formula> <tex-math notation="LaTeX">$M$ </tex-math></inline-formula> is the number of side information messages and <inline-formula> <tex-math notation="LaTeX">$r_{i}$ </tex-math></inline-formula> is the portion of the <inline-formula> <tex-math notation="LaTeX">$i$ </tex-math></inline-formula>th side information message that is cached with <inline-formula> <tex-math notation="LaTeX">$\sum _{i=1}^{M} r_{i}=S$ </tex-math></inline-formula>. Based on this capacity result, we prove two facts: First, for a fixed memory size <inline-formula> <tex-math notation="LaTeX">$S$ </tex-math></inline-formula> and a fixed number of accessible messages <inline-formula> <tex-math notation="LaTeX">$M$ </tex-math></inline-formula>, uniform caching achieves the lowest normalized download cost, i.e., <inline-formula> <tex-math notation="LaTeX">$r_{i}=\frac {S}{M}$ </tex-math></inline-formula>, for <inline-formula> <tex-math notation="LaTeX">$i=1, {\dots }, M$ </tex-math></inline-formula>, is optimum. Second, for a fixed memory size <inline-formula> <tex-math notation="LaTeX">$S$ </tex-math></inline-formula>, among all possible <inline-formula> <tex-math notation="LaTeX">$K-\left \lceil{ {S} }\right \rceil +1$ </tex-math></inline-formula> uniform caching schemes, the uniform caching scheme which caches <inline-formula> <tex-math notation="LaTeX">$M=K$ </tex-math></inline-formula> messages achieves the lowest normalized download cost.

[1]  Eyal Kushilevitz,et al.  Private information retrieval , 1998, JACM.

[2]  Silvio Micali,et al.  Computationally Private Information Retrieval with Polylogarithmic Communication , 1999, EUROCRYPT.

[3]  W. Gasarch A Survey on Private Information Retrieval , 2004 .

[4]  Rafail Ostrovsky,et al.  A Survey of Single-Database Private Information Retrieval: Techniques and Applications , 2007, Public Key Cryptography.

[5]  Kannan Ramchandran,et al.  One extra bit of download ensures perfectly private information retrieval , 2014, 2014 IEEE International Symposium on Information Theory.

[6]  Eitan Yaakobi,et al.  Codes for distributed PIR with low storage overhead , 2015, 2015 IEEE International Symposium on Information Theory (ISIT).

[7]  Hirosuke Yamamoto,et al.  Private information retrieval for coded storage , 2014, 2015 IEEE International Symposium on Information Theory (ISIT).

[8]  Kannan Ramchandran,et al.  Efficient Private Information Retrieval Over Unsynchronized Databases , 2015, IEEE Journal of Selected Topics in Signal Processing.

[9]  Hua Sun,et al.  The Capacity of Symmetric Private Information Retrieval , 2016, 2016 IEEE Globecom Workshops (GC Wkshps).

[10]  Salim El Rouayheb,et al.  Private Information Retrieval From MDS Coded Data in Distributed Storage Systems , 2016, IEEE Transactions on Information Theory.

[11]  Hua Sun,et al.  The Capacity of Private Information Retrieval , 2017, IEEE Transactions on Information Theory.

[12]  Ravi Tandon,et al.  Private Information Retrieval from Storage Constrained Databases - Coded Caching meets PIR , 2017, ArXiv.

[13]  Ravi Tandon,et al.  The capacity of cache aided private information retrieval , 2017, 2017 55th Annual Allerton Conference on Communication, Control, and Computing (Allerton).

[14]  Salim El Rouayheb,et al.  Robust private information retrieval on coded data , 2017, 2017 IEEE International Symposium on Information Theory (ISIT).

[15]  Mikael Skoglund,et al.  Linear symmetric private information retrieval for MDS coded distributed storage with colluding servers , 2017, 2017 IEEE Information Theory Workshop (ITW).

[16]  Minchul Kim,et al.  Cache-aided private information retrieval , 2017, 2017 51st Asilomar Conference on Signals, Systems, and Computers.

[17]  Hua Sun,et al.  Private information retrieval from MDS coded data with colluding servers: Settling a conjecture by Freij-Hollanti et al , 2017, ISIT.

[18]  Camilla Hollanti,et al.  Private Information Retrieval from Coded Databases with Colluding Servers , 2016, SIAM J. Appl. Algebra Geom..

[19]  Camilla Hollanti,et al.  Private information retrieval schemes for codec data with arbitrary collusion patterns , 2017, 2017 IEEE International Symposium on Information Theory (ISIT).

[20]  Mikael Skoglund,et al.  Secure symmetric private information retrieval from colluding databases with adversaries , 2017, 2017 55th Annual Allerton Conference on Communication, Control, and Computing (Allerton).

[21]  Mikael Skoglund,et al.  Symmetric private information retrieval for MDS coded distributed storage , 2016, 2017 IEEE International Conference on Communications (ICC).

[22]  Gennian Ge,et al.  Private Information Retrieval from MDS Coded Databases with Colluding Servers under Several Variant Models , 2017, 1705.03186.

[23]  Gennian Ge,et al.  Multi-file Private Information Retrieval from MDS Coded Databases with Colluding Servers , 2017, ArXiv.

[24]  Hua Sun,et al.  Optimal Download Cost of Private Information Retrieval for Arbitrary Message Length , 2016, IEEE Transactions on Information Forensics and Security.

[25]  Hua Sun,et al.  Multiround Private Information Retrieval: Capacity and Storage Overhead , 2016, IEEE Transactions on Information Theory.

[26]  Mikael Skoglund,et al.  Secure Private Information Retrieval from Colluding Databases with Eavesdroppers , 2017, 2018 IEEE International Symposium on Information Theory (ISIT).

[27]  Mahtab Mirmohseni,et al.  Private function retrieval , 2017, 2018 Iran Workshop on Communication and Information Theory (IWCIT).

[28]  Salim El Rouayheb,et al.  Lifting Private Information Retrieval from Two to any Number of Messages , 2018, 2018 IEEE International Symposium on Information Theory (ISIT).

[29]  Sennur Ulukus,et al.  Cache-Aided Private Information Retrieval With Partially Known Uncoded Prefetching: Fundamental Limits , 2017, IEEE Journal on Selected Areas in Communications.

[30]  Syed Ali Jafar,et al.  The Asymptotic Capacity of Private Search , 2018, 2018 IEEE International Symposium on Information Theory (ISIT).

[31]  Hua Sun,et al.  The Capacity of Robust Private Information Retrieval With Colluding Databases , 2016, IEEE Transactions on Information Theory.

[32]  Mikael Skoglund,et al.  The Capacity of Private Information Retrieval with Eavesdroppers , 2018, 2018 52nd Asilomar Conference on Signals, Systems, and Computers.

[33]  Sennur Ulukus,et al.  Multi-Message Private Information Retrieval: Capacity Results and Near-Optimal Schemes , 2017, IEEE Transactions on Information Theory.

[34]  Hua Sun,et al.  The Capacity of Private Computation , 2018, 2018 IEEE International Conference on Communications (ICC).

[35]  Sennur Ulukus,et al.  The Capacity of Private Information Retrieval From Coded Databases , 2016, IEEE Transactions on Information Theory.

[36]  Sennur Ulukus,et al.  The Capacity of Private Information Retrieval from Byzantine and Colluding Databases , 2017, IEEE Transactions on Information Theory.

[37]  Sennur Ulukus,et al.  Fundamental Limits of Cache-Aided Private Information Retrieval With Unknown and Uncoded Prefetching , 2017, IEEE Transactions on Information Theory.

[38]  Sennur Ulukus,et al.  Asymmetry Hurts: Private Information Retrieval Under Asymmetric Traffic Constraints , 2018, IEEE Transactions on Information Theory.

[39]  Sennur Ulukus,et al.  The Capacity of Private Information Retrieval With Partially Known Private Side Information , 2019, IEEE Transactions on Information Theory.

[40]  Gennian Ge,et al.  A general private information retrieval scheme for MDS coded databases with colluding servers , 2017, Designs, Codes and Cryptography.

[41]  Sennur Ulukus,et al.  Private Information Retrieval Through Wiretap Channel II: Privacy Meets Security , 2018, IEEE Transactions on Information Theory.

[42]  Swanand Kadhe,et al.  Private Information Retrieval With Side Information , 2017, IEEE Transactions on Information Theory.

[43]  Syed Ali Jafar,et al.  The Capacity of Private Information Retrieval with Private Side Information , 2017, ArXiv.