Quantitative Cathodoluminescence Mapping with Application to a Kalgoorlie Scheelite

Abstract A method for the analysis of cathodoluminescence spectra is described that enables quantitative trace-element-level distributions to be mapped within minerals and materials. Cathodoluminescence intensities for a number of rare earth elements are determined by Gaussian peak fitting, and these intensities show positive correlation with independently measured concentrations down to parts per million levels. The ability to quantify cathodoluminescence spectra provides a powerful tool to determine both trace element abundances and charge state, while major elemental levels can be determined using more traditional X-ray spectrometry. To illustrate the approach, a scheelite from Kalgoorlie, Western Australia, is hyperspectrally mapped and the cathodoluminescence is calibrated against microanalyses collected using a laser ablation inductively coupled plasma mass spectrometer. Trace element maps show micron scale zoning for the rare earth elements Sm3+, Dy3+, Er3+, and Eu3+/Eu2+. The distribution of Eu2+/Eu3+ suggests that both valences of Eu have been preserved in the scheelite since its crystallization 1.63 billion years ago.

[1]  S. Reed,et al.  Electron-Probe Measurements near Phase Boundaries , 1963 .

[2]  A. N. Mariano,et al.  Europium-activated cathodoluminescence in minerals , 1975 .

[3]  G. Walker,et al.  Ligand field bands of Mn/2+/ and Fe/3+/ luminescence centres and their site occupancy in plagioclase feldspars , 1978 .

[4]  Arnol'd Sergeevich Marfunin,et al.  Spectroscopy, Luminescence and Radiation Centers in Minerals , 1979 .

[5]  R. Mason Ion microprobe analysis of trace elements in calcite with an application to the cathodoluminescence zonation of limestone cements from the Lower Carboniferous of South Wales, U.K. , 1987 .

[6]  D. J. Marshall,et al.  Cathodoluminescence of geological materials , 1988 .

[7]  W. J. Meyers,et al.  Cathodoluminescence in diagenetic calcites; the roles of Fe and Mn as deduced from electron probe and spectrophotometric measurements , 1989 .

[8]  B. G. Yacobi,et al.  Cathodoluminescence Microscopy of Inorganic Solids , 1990, Springer US.

[9]  C. Roques-carmes,et al.  Cathodoluminescence applied to the microcharacterization of mineral materials : a present status in experimentation and interpretation , 1992 .

[10]  A. Jones,et al.  Rare Earth Minerals: Chemistry, Origin and Ore Deposits , 1995 .

[11]  D. Habermann,et al.  Low limit of Mn2+-activated cathodoluminescence of calcite: state of the art , 1998 .

[12]  R. Reisfeld,et al.  Laser-induced time-resolved luminescence of rare-earth elements in scheelite , 1999, Mineralogical Magazine.

[13]  I. Campbell,et al.  Rare earth element systematics in scheelite from hydrothermal gold deposits in the Kalgoorlie-Norseman region, Western Australia , 1999 .

[14]  A. Stephan,et al.  High resolution rare-earth elements analyses of natural apatite and its application in geo-sciences: Combined micro-PIXE, quantitative CL spectroscopy and electron spin resonance analyses , 2000 .

[15]  M. Pagel,et al.  Cathodoluminescence in Geosciences , 2000 .

[16]  G. Panczer,et al.  Systematic Cathodoluminescence Spectral Analysis of Synthetic Doped Minerals: Anhydrite, Apatite, Calcite, Fluorite, Scheelite and Zircon , 2000 .

[17]  A. Bettiol,et al.  Mapping REE distribution in scheelite using luminescence , 2000, Mineralogical Magazine.

[18]  R. Bateman,et al.  Inhomogeneous distribution of REE in scheelite and dynamics of Archaean hydrothermal systems (Mt. Charlotte and Drysdale gold deposits, Western Australia) , 2000 .

[19]  M. Krbetschek,et al.  High-Resolution Cathodoluminescence Studies of Feldspar Minerals , 2000 .

[20]  N. Wilson,et al.  Holistic Mapping in an Electron Microprobe , 2001, Microscopy and Microanalysis.

[21]  D. Habermann Quantitative cathodoluminescence (CL) spectroscopy of minerals: possibilities and limitations , 2002 .

[22]  J. Götze Potential of cathodoluminescence (CL) microscopy and spectroscopy for the analysis of minerals and materials , 2002, Analytical and bioanalytical chemistry.

[23]  R. Bateman,et al.  Origins of Nd–Sr–Pb isotopic variations in single scheelite grains from Archaean gold deposits, Western Australia , 2002 .

[24]  R. Martin,et al.  Simultaneous composition mapping and hyperspectral cathodoluminescence imaging of InGaN epilayers , 2003 .

[25]  D. Jeon,et al.  Luminescence properties of europium-terbium double activated calcium tungstate phosphor , 2004 .

[26]  M. Gaft,et al.  Luminescence techniques in Earth Sciences , 2004 .

[27]  M. Clouter,et al.  The luminescence decay-time of Mn2+ activated calcite , 2005 .

[28]  C. MacRae,et al.  Hyperspectral mapping—combining cathodoluminescence and X‐ray collection in an electron microprobe , 2005, Microscopy research and technique.

[29]  Renata Reisfeld,et al.  Modern Luminescence Spectroscopy of Minerals and Materials , 2005 .

[30]  C. Ryan,et al.  THE OXIDATION STATE OF EUROPIUM IN HYDROTHERMAL SCHEELITE: IN SITU MEASUREMENT BY XANES SPECTROSCOPY , 2006 .

[31]  Boehls Butte,et al.  Cathodoluminescence of coexisting plagioclases , Boehls Butte anorthosite : CL activators and fluid flow paths , 2007 .

[32]  C. MacRae,et al.  Luminescence Database I—Minerals and Materials , 2008, Microscopy and Microanalysis.