On the restrictively preconditioned conjugate gradient method for solving saddle point problems

Bai et al. [2003, IMA J Numer. Anal. 23, 561–580] proposed the restrictively preconditioned conjugate gradient (RPCG) method. In this paper, based on the special structure of saddle point systems, we consider the RPCG method and propose a new format. This new format can be obtained by applying the classical PCG method to a simpler system instead of the original format, which greatly reduces computational cost. The new format of the RPCG method can often attain almost the same convergence rate as the original one. In particular, for some practical problems, the former converges faster than the latter. Numerical experiments show the efficiency of the proposed format.

[1]  Charles R. Johnson,et al.  Matrix analysis , 1985, Statistical Inference for Engineers and Data Scientists.

[2]  O. Axelsson,et al.  On the rate of convergence of the preconditioned conjugate gradient method , 1986 .

[3]  Zeng-Qi Wang,et al.  Restrictive preconditioners for conjugate gradient methods for symmetric positive definite linear systems , 2006 .

[4]  Howard C. Elman,et al.  Algorithm 866: IFISS, a Matlab toolbox for modelling incompressible flow , 2007, TOMS.

[5]  M. Hestenes,et al.  Methods of conjugate gradients for solving linear systems , 1952 .

[6]  Gene H. Golub,et al.  Numerical solution of saddle point problems , 2005, Acta Numerica.

[7]  M. Saunders,et al.  Solution of Sparse Indefinite Systems of Linear Equations , 1975 .

[8]  Robert H. Halstead,et al.  Matrix Computations , 2011, Encyclopedia of Parallel Computing.

[9]  Joachim Schöberl,et al.  Symmetric Indefinite Preconditioners for Saddle Point Problems with Applications to PDE-Constrained Optimization Problems , 2007, SIAM J. Matrix Anal. Appl..

[10]  Z. Bai,et al.  Restrictively preconditioned conjugate gradient methods for systems of linear equations , 2003 .

[11]  Walter Zulehner,et al.  Analysis of iterative methods for saddle point problems: a unified approach , 2002, Math. Comput..

[12]  Shuhuang Xiang,et al.  New preconditioners based on symmetric-triangular decomposition for saddle point problems , 2011, Computing.

[13]  Michael A. Saunders,et al.  Algorithm 937: MINRES-QLP for symmetric and Hermitian linear equations and least-squares problems , 2013, TOMS.

[14]  J. Pasciak,et al.  A preconditioning technique for indefinite systems resulting from mixed approximations of elliptic problems , 1988 .

[15]  Howard C. Elman,et al.  Finite Elements and Fast Iterative Solvers: with Applications in Incompressible Fluid Dynamics , 2014 .

[16]  Barry Lee,et al.  Finite elements and fast iterative solvers: with applications in incompressible fluid dynamics , 2006, Math. Comput..

[17]  Martin Stoll,et al.  Combination Preconditioning and the Bramble-Pasciak+ Preconditioner , 2008, SIAM J. Matrix Anal. Appl..

[18]  Michael A. Saunders,et al.  MINRES-QLP: A Krylov Subspace Method for Indefinite or Singular Symmetric Systems , 2010, SIAM J. Sci. Comput..

[19]  Gene H. Golub,et al.  Symmetric-triangular decomposition and its applications part II: Preconditioners for indefinite systems , 2008 .

[20]  J. Meijerink,et al.  An iterative solution method for linear systems of which the coefficient matrix is a symmetric -matrix , 1977 .