Polymorphous Transformations of Nanometric Iron(III) Oxide: A Review

There is great interest in iron oxides, especially in nanosized form, for both fundamental and practical reasons. Because of its polymorphism, iron(III) oxide (ferric oxide, Fe2O3) is one of the most interesting and potentially useful phases of the iron oxides. Each of the four different known crystalline Fe2O3 polymorphs (alpha-, beta-, gamma-, and epsilon-Fe2O3) has unique biochemical, magnetic, catalytic, and other properties that make it suitable for specific technical and biomedical applications. High temperature treatment is a key step in most syntheses of iron(III) oxides but often triggers polymorphous transformations that result in the formation of undesired mixtures of Fe2O3 polymorphs. It is therefore important to control the parameters that induce polymorphous transformations when seeking to prepare a given Fe2O3 polymorph as a single phase; identifying and understanding these parameters is a major challenge in the study of the polymorphism of solid compounds. This review discusses the depende...

[1]  J. Artman,et al.  Magnetic Anisotropy in Antiferromagnetic Corundum-Type Sesquioxides , 1965 .

[2]  J. Zhao,et al.  High Bulk Modulus of Nanocrystal γ-Fe2O3 with Chemical Dodecyl Benzene Sulfonic Decoration Under High Pressure , 2000 .

[3]  A. Ulman,et al.  Magnetic Enhancement of γ-Fe 2 O 3 Nanoparticles by Sonochemical Coating , 2002 .

[4]  K. Hashimoto,et al.  Giant Coercive Field of Nanometer‐ Sized Iron Oxide , 2004 .

[5]  Luo Hongmei,et al.  Synthesis and gas-sensing characteristics of high thermostability γ-Fe2O3 powder , 1996 .

[6]  K. Hashimoto,et al.  The addition effects of alkaline earth ions in the chemical synthesis of ε-Fe2O3 nanocrystals that exhibit a huge coercive field , 2005 .

[7]  A. Gedanken,et al.  Synthesis of Porous α-Fe2O3 Nanorods and Deposition of Very Small Gold Particles in the Pores for Catalytic Oxidation of CO , 2007 .

[8]  M. Knobel,et al.  Superparamagnetism and other magnetic features in granular materials: a review on ideal and real systems. , 2008, Journal of nanoscience and nanotechnology.

[9]  M. Ge,et al.  High temperature stable monodisperse superparamagnetic core-shell iron-oxide@SnO2 nanoparticles , 2009 .

[10]  R. Zbořil,et al.  Cubic β-Fe2O3 as the product of the thermal decomposition of Fe2(SO4)3 , 1999 .

[11]  H. Dammak,et al.  Existence of a direct phase transformation from haematite to maghemite , 1995 .

[12]  R. Harrison,et al.  Lamellar magnetism in the haematite–ilmenite series as an explanation for strong remanent magnetization , 2002, Nature.

[13]  Lide Zhang,et al.  The thermal stability of nanocrystalline maghemite , 1998 .

[14]  Yanwei Ma,et al.  Magnetic-Field-Induced Synthesis of Magnetic γ-Fe2O3 Nanotubes , 2007 .

[15]  J. Lee,et al.  Phase transformation of β-Fe2O3 hollow nanoparticles , 2008 .

[16]  A. Roig,et al.  High- and Low-Temperature Crystal and Magnetic Structures of ε-Fe2O3 and Their Correlation to Its Magnetic Properties , 2006 .

[17]  T. Kikegawa,et al.  High-pressure phase transition of hematite, Fe2O3 , 2004 .

[18]  R. Zbořil,et al.  Thermally Induced Solid-State Syntheses of γ-Fe2O3 Nanoparticles and Their Transformation to α-Fe2O3 via ε-Fe2O3 , 2002 .

[19]  Y. Choa,et al.  Hollow nanoparticles of β-iron oxide synthesized by chemical vapor condensation , 2004 .

[20]  Bonamali Pal,et al.  Preparation of iron oxide thin film by metal organic deposition from Fe(III)-acetylacetonate: a study of photocatalytic properties , 2000 .

[21]  R. Zbořil,et al.  Polymorphous Exhibitions of Iron(III) Oxide during Isothermal Oxidative Decompositions of Iron Salts: A Key Role of the Powder Layer Thickness , 2008 .

[22]  R. Zbořil,et al.  The Role of Intermediates in the Process of Red Ferric Pigment Manufacture from FeSO4⋅7H2O , 2002 .

[23]  A. Demourgues,et al.  Impact of structural features on pigment properties of α-Fe2O3 haematite , 2008 .

[24]  Arnold J. Forman,et al.  Electrodeposition of α-Fe2O3 Doped with Mo or Cr as Photoanodes for Photocatalytic Water Splitting , 2008 .

[25]  P. B. Braun A Superstructure in Spinels , 1952, Nature.

[26]  Juan Zhou,et al.  Large-Scale and Controlled Synthesis of Iron Oxide Magnetic Short Nanotubes: Shape Evolution, Growth Mechanism, and Magnetic Properties , 2010 .

[27]  C. Serna,et al.  Structural Characteristics of Uniform γ-Fe2O3 Particles with Different Axial (Length/Width) Ratios , 1994 .

[28]  Ralf Moos,et al.  α-Iron oxide: An intrinsically semiconducting oxide material for direct thermoelectric oxygen sensors , 2010 .

[29]  I. Safarik,et al.  Magnetic Nanoparticles and Biosciences , 2002 .

[30]  G. Kletetschka,et al.  The role of hematite ilmenite solid solution in the production of magnetic anomalies in ground- and satellite-based data , 2002 .

[31]  A. Roig,et al.  Nonzero orbital moment in high coercivity γ-Fe 2 O 3 and low-temperature collapse of the magnetocrystalline anisotropy , 2009 .

[32]  Shudong Zhang,et al.  Hematite Hollow Spheres with a Mesoporous Shell: Controlled Synthesis and Applications in Gas Sensor and Lithium Ion Batteries , 2008 .

[33]  D. Fiorani,et al.  Surface-related properties of γ-Fe2O3 nanoparticles , 2000 .

[34]  R. Jeanloz,et al.  Static compression of α-Fe2O3: linear incompressibility of lattice parameters and high-pressure transformations , 2003 .

[35]  Amirhossein H. Memar,et al.  Study on photocurrent of bilayers photoanodes using different combination of WO3 and Fe2O3 , 2010 .

[36]  O. Shebanova,et al.  Raman study of magnetite (Fe3O4): laser‐induced thermal effects and oxidation , 2003 .

[37]  N. Turro,et al.  Influence of Capping Groups on the Synthesis of γ-Fe_2O_3 Nanocrystals , 2004 .

[38]  G. W. Oosterhout,et al.  A New Superstructure in Gamma-Ferric Oxide , 1958, Nature.

[39]  M. Grätzel,et al.  Controlling Photoactivity in Ultrathin Hematite Films for Solar Water‐Splitting , 2010 .

[40]  Jiri Pechousek,et al.  Catalytic efficiency of iron(III) oxides in decomposition of hydrogen peroxide: competition between the surface area and crystallinity of nanoparticles. , 2007, Journal of the American Chemical Society.

[41]  Jun Chen,et al.  α‐Fe2O3 Nanotubes in Gas Sensor and Lithium‐Ion Battery Applications , 2005 .

[42]  J. Hanson,et al.  Formation of γ-Fe2O3 nanoparticles and vacancy ordering: An in situ X-ray powder diffraction study , 2007 .

[43]  Yoshio Saito,et al.  Phase Transition Temperature of γ-Fe2O3 Ultrafine Particle , 2004 .

[44]  Wu Zhang,et al.  Self-assembled three-dimensional flower-like α-Fe2O3 nanostructures and their application in catalysis , 2009 .

[45]  É. Duguet,et al.  Magnetic nanoparticle design for medical diagnosis and therapy , 2004 .

[46]  Zhengjun Zhang,et al.  Enhanced photocatalytic activity of porous α-Fe2O3 films prepared by rapid thermal oxidation , 2008 .

[47]  A. Roig,et al.  Nanospheres of silica with an epsilon-Fe2O3 single crystal nucleus. , 2009, ACS nano.

[48]  I. Chernyshova,et al.  Size-dependent structural transformations of hematite nanoparticles. 1. Phase transition. , 2007, Physical chemistry chemical physics : PCCP.

[49]  A. Navrotsky,et al.  Size-Driven Structural and Thermodynamic Complexity in Iron Oxides , 2008, Science.

[50]  Taeghwan Hyeon,et al.  Synthesis of highly crystalline and monodisperse maghemite nanocrystallites without a size-selection process. , 2001, Journal of the American Chemical Society.

[51]  H. Gasteiger,et al.  Kinetics of the Selective Low-Temperature Oxidation of CO in H2-Rich Gas over Au/α-Fe2O3 , 1999 .

[52]  F. Yen,et al.  Crystallite Size Variations of Nanosized Fe2O3Powders during γ- to α-Phase Transformation , 2002 .

[53]  M. Hervieu,et al.  Direct phase transformation from hematite to maghemite during high energy ball milling , 2001 .

[54]  J. Greneche,et al.  The influence of ruthenium on the magnetic properties of γ-Fe2O3 (maghemite) studied by Mössbauer spectroscopy , 2003 .

[55]  L. H. Bowen,et al.  Some aspects concerning the characterization of iron oxides and hydroxides in soils and clays , 1990 .

[56]  Q. Pankhurst,et al.  Applications of magnetic nanoparticles in biomedicine , 2003 .

[57]  R. Costo,et al.  The preparation of magnetic nanoparticles for applications in biomedicine , 2003 .

[58]  A. Namai,et al.  The Origin of Ferromagnetism in ε-Fe2O3 and ε-Gaxfe2-xO3 Nanomagnets , 2009 .

[59]  V. Sharma,et al.  A nanocrystalline hematite film prepared from iron(III) chloride precursor , 2010 .

[60]  E. Tronc,et al.  Structural and Magnetic Characterization ofε-Fe2O3 , 1998 .

[61]  G. Hadjipanayis,et al.  Thermal decomposition of Fe2(SO4)3: Demonstration of Fe2O3 polymorphism , 2003 .

[62]  Yaochun Shen,et al.  Preparation, Structure, and Properties of Three-Dimensional Ordered α-Fe2O3 Nanoparticulate Film , 2000 .

[63]  K. Hashimoto,et al.  Formation of spherical and rod-shaped ε-Fe2O3 nanocrystals with a large coercive field , 2005 .

[64]  A. Lukoyanov,et al.  Transition of iron ions from high-spin to low-spin state and pressure-induced insulator-metal transition in hematite Fe2O3 , 2007 .

[65]  M. Trari,et al.  Physical and photoelectrochemical characterizations of hematite α-Fe2O3: Application to photocatalytic oxygen evolution , 2010 .

[66]  F. L. Souza,et al.  Nanostructured hematite thin films produced by spin-coating deposition solution : Application in water splitting , 2009 .

[67]  Shouheng Sun,et al.  Recent Advances in Chemical Synthesis, Self‐Assembly, and Applications of FePt Nanoparticles , 2006 .

[68]  Yuko Ichiyanagi,et al.  Structural, magnetic and thermal characterizations of Fe2O3 nanoparticle systems , 2002 .

[69]  Dayang Wang,et al.  Fe2O3/macroporous resin nanocomposites. High efficiency catalysts for hydroxylation of phenol with H2O2 , 1998 .

[70]  J. Chai,et al.  Ethanol sensors based on nano-sized α-Fe2O3 with SnO2, ZrO2, TiO2 solid solutions , 2003 .

[71]  Wen‐Cui Li,et al.  Shape and size controlled alpha-Fe₂O₃ nanoparticles as supports for gold-catalysts: Synthesis and influence of support shape and size on catalytic performance , 2009 .

[72]  I. Hamada,et al.  Structural and magnetic susceptibility studies of SiO2: Fe2O3 nano-composites prepared by sol–gel technique , 2005 .

[73]  Ch. Simon,et al.  Magnetoelectric coupling in ε-Fe2O3 nanoparticles , 2006 .

[74]  K. Hashimoto,et al.  First observation of phase transformation of all four Fe(2)O(3) phases (gamma --> epsilon --> beta --> alpha-phase). , 2009, Journal of the American Chemical Society.

[75]  Nathan T. Hahn,et al.  Photoelectrochemical Performance of Nanostructured Ti- and Sn-Doped α-Fe2O3 Photoanodes , 2010 .

[76]  V. Sharma,et al.  Iron(III) Oxide Nanoparticles in the Thermally Induced Oxidative Decomposition of Prussian Blue, Fe4[Fe(CN)6]3 , 2004 .

[77]  A. Alivisatos,et al.  Size dependence of the pressure-induced γ to α structural phase transition in iron oxide nanocrystals , 2005 .

[78]  Yong Ding,et al.  Nanowire Structural Evolution from Fe3O4 to ϵ‐Fe2O3 , 2007 .

[79]  Radek Zboril,et al.  Maghemite nanoparticles by view of Mössbauer spectroscopy. , 2006, Journal of nanoscience and nanotechnology.

[80]  A. Lu,et al.  Magnetic nanoparticles: synthesis, protection, functionalization, and application. , 2007, Angewandte Chemie.

[81]  K. Barick,et al.  Structural and magnetic properties of γ- and ε-Fe2O3 nanoparticles dispersed in silica matrix , 2010 .

[82]  Zhimin Liu,et al.  Chitosan-mediated synthesis of mesoporous α-Fe2O3 nanoparticles and their applications in catalyzing selective oxidation of cyclohexane , 2010 .

[83]  R. Zbořil,et al.  One-step solid state synthesis of capped γ-Fe2O3 nanocrystallites , 2008, Nanotechnology.

[84]  Libor Machala,et al.  Amorphous iron(III) oxide--a review. , 2007, The journal of physical chemistry. B.

[85]  Mool C. Gupta,et al.  Au/Fe2O3 nanocatalysts for CO oxidation: A comparative study of deposition–precipitation and coprecipitation techniques , 2005 .

[86]  K. Hashimoto,et al.  Synthesis, Crystal Structure, and Magnetic Properties of ϵ‐InxFe2–xO3 Nanorod‐Shaped Magnets , 2007 .

[87]  C. Karunakaran,et al.  Effect of high pressure and temperature on nanocrystalline Fe2O3 and TiO2 , 2001 .

[88]  C. Sangregorio,et al.  Characterization of Iron Oxide Nanoparticles in an Fe2O3−SiO2 Composite Prepared by a Sol−Gel Method , 1998 .

[89]  S. Mørup,et al.  Spin-glass-like ordering of the magnetic moments of interacting nanosized maghemite particles. , 1995, Physical review. B, Condensed matter.

[90]  D. Rinaldi,et al.  Thermal hysteresis of Morin transition in hematite particles. , 2010, Physical chemistry chemical physics : PCCP.

[91]  M. Takano,et al.  Thermal properties of the γ-Fe2O3/poly(methyl methacrylate) core/shell nanoparticles , 2005 .

[92]  J. Greneche,et al.  New evidences of in situ laser irradiation effects on γ-Fe2O3 nanoparticles: a Raman spectroscopic study , 2011 .

[93]  P. Morais,et al.  The thermal stability of maghemite-silica nanocomposites: An investigation using X-ray diffraction and Raman spectroscopy , 2007 .

[94]  J. Dormann,et al.  Collective magnetic state in nanoparticles systems , 1999 .

[95]  E. Tronc,et al.  Spin collinearity and thermal disorder in ε-Fe2O3 , 2005 .

[96]  R. Zbořil,et al.  An effect of iron(III) oxides crystallinity on their catalytic efficiency and applicability in phenol degradation—A competition between homogeneous and heterogeneous catalysis , 2009 .

[97]  Manfred Martin,et al.  In situ XRD study of the phase transition of nanocrystalline maghemite (γ-Fe2O3) to hematite (α-Fe2O3) , 2000 .

[98]  M. Nakajima,et al.  Synthesis of an electromagnetic wave absorber for high-speed wireless communication. , 2009, Journal of the American Chemical Society.

[99]  M. Takano,et al.  Mössbauer Spectroscopy of Pressure-Induced Phase Transformation from Maghemite to Hematite , 2003 .

[100]  P. Hautojärvi,et al.  Characterization of iron oxide thin films , 2004 .

[101]  Dalibor Jancik,et al.  Superparamagnetic maghemite nanoparticles from solid-state synthesis - their functionalization towards peroral MRI contrast agent and magnetic carrier for trypsin immobilization. , 2009, Biomaterials.

[102]  R. Krol,et al.  Influence of Si dopant and SnO2 interfacial layer on the structure of the spray-deposited Fe2O3 films , 2009 .

[103]  M. Stoia,et al.  Thermal decomposition of some metal-organic precursors , 2007 .

[104]  E. Darezereshki One-step synthesis of hematite (α-Fe2O3) nano-particles by direct thermal-decomposition of maghemite , 2011 .

[105]  Deren Yang,et al.  A facile two-step hydrothermal route for the synthesis of γ-Fe2O3 nanocrystals and their magnetic properties , 2007 .

[106]  Z. Yamani,et al.  Laser induced photo-catalytic oxidation/splitting of water over α-Fe2O3, WO3, TiO2 and NiO catalysts: activity comparison , 2004 .

[107]  Anilesh Kumar,et al.  Synthesis of colloidal silver iron oxide nanoparticles—study of their optical and magnetic behavior , 2009, Nanotechnology.

[108]  B. Raj,et al.  Magnetic nanoparticles with enhanced γ-Fe2O3 to α-Fe2O3 phase transition temperature , 2006 .

[109]  J. Tuček,et al.  ε-Fe2O3: An Advanced Nanomaterial Exhibiting Giant Coercive Field, Millimeter-Wave Ferromagnetic Resonance, and Magnetoelectric Coupling , 2010 .

[110]  A. Namai,et al.  Synthesis, crystal structure, and magnetic properties of ε-GaIII FxeIII O2−x3 nanorods , 2009 .

[111]  Qingchao Han,et al.  Growth and Properties of Single-Crystalline ?-Fe2O3 Nanowires , 2007 .

[112]  Urs O. Häfeli,et al.  Scientific and clinical applications of magnetic carriers , 1997 .

[113]  S. Mills,et al.  IN SITU XRD STUDY OF THE THERMAL DECOMPOSITION OF NATURAL ARSENIAN PLUMBOJAROSITE , 2009 .

[114]  P. Chu,et al.  Glycine-assisted hydrothermal synthesis of peculiar porous alpha-Fe2O3 nanospheres with excellent gas-sensing properties. , 2010, Analytica chimica acta.

[115]  S. Mørup,et al.  Enhanced bulk modulus and reduced transition pressure in gamma-Fe2O3 nanocrystals. , 1998 .

[116]  A. Roig,et al.  Stabilization of metastable phases in spatially restricted fields: the case of the Fe2O3 polymorphs. , 2007, Faraday discussions.

[117]  S. Vilminot,et al.  Formation of Nanoparticles of ε-Fe2O3 from Yttrium Iron Garnet in a Silica Matrix: An Unusually Hard Magnet with a Morin-Like Transition below 150 K , 2005 .

[118]  V. McKee,et al.  Nanostructured α-Fe2O3 Thin Films for Photoelectrochemical Hydrogen Generation , 2009 .

[119]  R. Zbořil,et al.  Thermal decomposition of almandine garnet: Mössbauer study , 2001 .

[120]  S. Vilminot,et al.  A temperature and magnetic field dependence Mössbauer study of ɛ-Fe2O3 , 2006 .

[121]  A. Srivastava,et al.  Synthesis of monodispersed gamma-Fe2O3 nanoparticles using ferrocene as a novel precursor. , 2009, Journal of nanoscience and nanotechnology.

[122]  A. Ulman,et al.  Doping gamma-Fe(2)O(3) nanoparticles with Mn(III) suppresses the transition to the alpha-Fe(2)O(3) structure. , 2003, Journal of the American Chemical Society.

[123]  S. Russo,et al.  Hybrid density functional theory study of the high-pressure polymorphs of α -Fe2 O3 hematite , 2009 .

[124]  Miroslav Mashlan,et al.  Iron(III) Oxides from Thermal ProcessesSynthesis, Structural and Magnetic Properties, Mössbauer Spectroscopy Characterization, and Applications† , 2002 .

[125]  E. Tronc,et al.  Mössbauer investigation of the γ→α-Fe2O3 transformation in small particles , 1990 .

[126]  N. Bovet,et al.  In situ and time resolved study of the γ/α-Fe2O3 transition in nanometric particles , 2007 .

[127]  S. Saxena,et al.  Pressure induced phase transformations in nanocrystalline maghemite (γ-Fe2O3) , 2002 .

[128]  T. Yoshino,et al.  Determination of high-pressure phase equilibria of Fe2O3 using the Kawai-type apparatus equipped with sintered diamond anvils , 2009 .

[129]  Ajay Kumar Gupta,et al.  Synthesis and surface engineering of iron oxide nanoparticles for biomedical applications. , 2005, Biomaterials.

[130]  R. Harrison,et al.  Magnetic exchange bias of more than 1 Tesla in a natural mineral intergrowth. , 2007, Nature nanotechnology.

[131]  S. Ono,et al.  In situ X-ray observation of phase transformation in Fe2O3 at high pressures and high temperatures , 2005 .

[132]  J. Dormann,et al.  From pure superparamagnetic regime to glass collective state of magnetic moments in γ-Fe2O3 nanoparticle assemblies , 1998 .

[133]  R. Caminiti,et al.  Characterization of Nanocrystalline γ–Fe_2O_3 Prepared by Wet Chemical Method , 1999 .

[134]  Eric W. McFarland,et al.  Pt-Doped α-Fe2O3 Thin Films Active for Photoelectrochemical Water Splitting , 2008 .

[135]  J. Lee,et al.  Optoelectronic properties of β-Fe2O3 hollow nanoparticles , 2008 .

[136]  F. Morin Magnetic Susceptibility of αFe 2 O 3 and αFe 2 O 3 with Added Titanium , 1950 .

[137]  H. Mao,et al.  Nature of the high-pressure transition in Fe2O3 hematite. , 2002, Physical review letters.

[138]  Jan Hrbáč,et al.  Carbon Electrodes Modified by Nanoscopic Iron(III) Oxides to Assemble Chemical Sensors for the Hydrogen Peroxide Amperometric Detection , 2007 .

[139]  Catherine C. Berry,et al.  Functionalisation of magnetic nanoparticles for applications in biomedicine , 2003 .

[140]  M. Panigrahi,et al.  Effect of capping and particle size on Raman laser-induced degradation of γ-Fe2O3 nanoparticles , 2004 .

[141]  S. Ohkoshi,et al.  A Millimeter‐Wave Absorber Based on Gallium‐Substituted ε‐Iron Oxide Nanomagnets , 2007 .

[142]  A. Bard,et al.  Development of a Potential Fe2O3-Based Photocatalyst Thin Film for Water Oxidation by Scanning Electrochemical Microscopy: Effects of Ag−Fe2O3 Nanocomposite and Sn Doping , 2009 .

[143]  J. Kohlbrecher,et al.  Structural and magnetic properties of amorphous iron oxide , 2010 .

[144]  Mohammed M. Rahman,et al.  Synthesis of γ-Fe2O3 by Thermal Decomposition of Ferrous Gluconate Dihydrate , 2004 .

[145]  Anke Weidenkaff,et al.  Photoelectrochemical water splitting with mesoporous hematite prepared by a solution-based colloidal approach. , 2010, Journal of the American Chemical Society.