On Phase-Separation Models: Asymptotics and Qualitative Properties

In this paper we study bound state solutions of a class of two-component nonlinear elliptic systems with a large parameter tending to infinity. The large parameter giving strong intercomponent repulsion induces phase separation and forms segregated nodal domains divided by an interface. To obtain the profile of bound state solutions near the interface, we prove the uniform Lipschitz continuity of bound state solutions when the spatial dimension is N = 1. Furthermore, we show that the limiting nonlinear elliptic system that arises has unbounded solutions with symmetry and monotonicity. These unbounded solutions are useful for rigorously deriving the asymptotic expansion of the minimizing energy which is consistent with the hypothesis of Du and Zhang (Discontin Dynam Sys, 2012). When the spatial dimension is N = 2, we establish the De Giorgi type conjecture for the blow-up nonlinear elliptic system under suitable conditions at infinity on bound state solutions. These results naturally lead us to formulate De Giorgi type conjectures for these types of systems in higher dimensions.

[1]  W. Ketterle,et al.  Radio-Frequency Spectroscopy of Ultracold Fermions , 2003, Science.

[2]  E. Valdinoci,et al.  Bernstein and De Giorgi type problems: new results via a geometric approach , 2008 .

[3]  Robert V. Kohn,et al.  Local minimisers and singular perturbations , 1989, Proceedings of the Royal Society of Edinburgh: Section A Mathematics.

[4]  Shlomo Sternberg Theory of Functions of a Real Variable , 2009 .

[5]  E. N. Dancer,et al.  Dynamics of strongly competing systems with many species , 2012 .

[6]  Yoshihiro Tonegawa,et al.  Convergence of phase-field approximations to the Gibbs–Thomson law , 2007 .

[7]  Alexander Gladkov,et al.  ENTIRE SOLUTIONS OF SEMILINEAR ELLIPTIC EQUATIONS , 2004 .

[8]  P. Ao,et al.  Binary Bose-Einstein Condensate Mixtures in Weakly and Strongly Segregated Phases , 1998, cond-mat/9809195.

[9]  F. Dalfovo,et al.  Theory of Bose-Einstein condensation in trapped gases , 1998, cond-mat/9806038.

[10]  Edward Norman Dancer,et al.  The limit equation for the Gross–Pitaevskii equations and S. Terraciniʼs conjecture , 2012 .

[11]  W. Ketterle,et al.  Bose-Einstein condensation , 1997 .

[12]  Nassif Ghoussoub,et al.  On a conjecture of De Giorgi and some related problems , 1998 .

[13]  Manuel del Pino,et al.  On De Giorgi's conjecture in dimension N>9 , 2011 .

[14]  P. Sternberg The effect of a singular perturbation on nonconvex variational problems , 1988 .

[15]  J. R. Ensher,et al.  Dynamics of component separation in a binary mixture of Bose-Einstein condensates , 1998 .

[16]  Jean-Michel Roquejoffre,et al.  Uniform Hölder Estimates in a Class of Elliptic Systems and Applications to Singular Limits in Models for Diffusion Flames , 2007 .

[17]  Hugo Tavares,et al.  Uniform Hölder Bounds for Nonlinear Schrödinger Systems with Strong Competition , 2008, 0810.5537.

[18]  Qiang Du,et al.  Computing the Ground State Solution of Bose-Einstein Condensates by a Normalized Gradient Flow , 2003, SIAM J. Sci. Comput..

[19]  Carl E. Wieman,et al.  PRODUCTION OF TWO OVERLAPPING BOSE-EINSTEIN CONDENSATES BY SYMPATHETIC COOLING , 1997 .

[20]  O. Savin Regularity of flat level sets in phase transitions , 2009 .

[21]  L. Caffarelli,et al.  Phase transitions: Uniform regularity of the intermediate layers , 2006 .

[22]  J. E. Hilliard,et al.  Free Energy of a Nonuniform System. I. Interfacial Free Energy , 1958 .

[23]  F. Lin,et al.  Singularly perturbed elliptic systems and multi-valued harmonic functions with free boundaries , 2008 .

[24]  R. Bass,et al.  The Liouville Property and a Conjecture of De Giorgi , 2000 .

[25]  L. Caffarelli,et al.  Uniform convergence of a singular perturbation problem , 2010 .

[26]  C. B. Morrey Multiple Integrals in the Calculus of Variations , 1966 .

[27]  I. P. Natanson,et al.  Theory of Functions of a Real Variable , 1955 .

[28]  Régis Monneau,et al.  One-dimensional symmetry of bounded entire solutions of some elliptic equations , 2000 .

[29]  Weizhu Bao Ground States and Dynamics of Multicomponent Bose-Einstein Condensates , 2004, Multiscale Model. Simul..

[30]  A. Bray Theory of phase-ordering kinetics , 1994, cond-mat/9501089.

[31]  Q. Du,et al.  Asymptotic analysis ofa diffuse interface relaxation to a nonlocal optimal partitionproblem , 2010 .

[32]  Edward Norman Dancer,et al.  Uniform Hölder estimate for singularly perturbed parabolic systems of Bose–Einstein condensates and competing species , 2011 .

[33]  Enrico Bombieri,et al.  Minimal cones and the Bernstein problem , 1969 .

[34]  Chris H. Greene,et al.  Hartree-Fock Theory for Double Condensates , 1997 .

[35]  Susanna Terracini,et al.  Asymptotic estimates for the spatial segregation of competitive systems , 2005 .

[36]  S. Terracini,et al.  Regularity of the nodal set of segregated critical configurations under a weak reflection law , 2010, 1002.3822.

[37]  Juncheng Wei,et al.  Asymptotic behaviour of solutions of planar elliptic systems with strong competition , 2008 .

[38]  A. Aftalion Progress in Nonlinear Differential Equations and their Applications , 2006 .

[39]  Nassif Ghoussoub,et al.  On De Giorgi's conjecture in dimensions 4 and 5 , 2003 .

[40]  F. Lin,et al.  Monotonicity properties of variational integrals, ap weights and unique continuation , 1986 .

[41]  Q. Du,et al.  ASYMPTOTIC ANALYSIS OF A DIFFUSE INTERFACE RELAXATION TO A NONLOCAL OPTIMAL PARTITION PROBLEM , 2010 .

[42]  C. E. Wieman,et al.  Vortices in a Bose Einstein condensate , 1999, QELS 2000.

[43]  Shu-Ming Chang,et al.  Segregated nodal domains of two-dimensional multispecies Bose-Einstein condensates , 2004 .

[44]  Eddy Timmermans Phase Separation of Bose-Einstein Condensates , 1998 .

[45]  Yihong Du,et al.  Competing Species Equations with Diffusion, Large Interactions, and Jumping Nonlinearities , 1994 .

[46]  L. Modica The gradient theory of phase transitions and the minimal interface criterion , 1987 .

[47]  S. Terracini,et al.  On Entire Solutions of an Elliptic System Modeling Phase Separations , 2012, 1204.1038.