On matchings and hamiltonian cycles in random graphs Annals of Discrete Mathematics 28

Let m = ¼ n log n + ½ n log log n + c n . Let Λ denote the set of graphs with vertices {1, 2, …, n }, m edges and minimum degree 1. We show that if a random graph G is chosen uniformly from Λ then We also show that if a random graph G with vertices {1, 2, …, n } is constructed by randomly adding edges one at a time then, almost surely, as soon as G has degree k, G has [ k /2] disjoint hamiltonian cycles plus a disjoint perfect matching if k is odd, where k is a fixed positive integer.

[1]  János Komlós,et al.  The longest path in a random graph , 1981, Comb..

[2]  Colin McDiarmid General percolation and random graphs , 1981, Advances in Applied Probability.

[3]  Eli Upfal,et al.  One-factor in random graphs based on vertex choice , 1982, Discret. Math..

[4]  T.I. Fenner,et al.  On the existence of Hamiltonian cycles in a class of random graphs , 1983, Discret. Math..

[5]  Leslie G. Valiant,et al.  Fast probabilistic algorithms for hamiltonian circuits and matchings , 1977, STOC '77.

[6]  Nicholas C. Wormald,et al.  On Hamilton Cycles in 3-Connected Cubic Maps , 1985 .

[7]  Béla Bollobás,et al.  Almost all Regular Graphs are Hamiltonian , 1983, European journal of combinatorics (Print).

[8]  L. Pósa,et al.  Hamiltonian circuits in random graphs , 1976, Discret. Math..

[9]  Martin E. Dyer,et al.  On linear programs with random costs , 1986, Math. Program..

[10]  Alan M. Frieze Limit Distribution for the Existence of Hamiltonian Cycles in Random Bipartite Graphs , 1985, Eur. J. Comb..

[11]  Richard M. Karp,et al.  Maximum Matchings in Sparse Random Graphs , 1981, FOCS 1981.

[12]  Tomasz Łuczak,et al.  On Matchings and Hamiltonian Cycles in Subgraphs of Random Graphs , 1987 .

[13]  János Komlós,et al.  Limit distribution for the existence of hamiltonian cycles in a random graph , 1983, Discret. Math..

[14]  Béla Bollobás,et al.  A Probabilistic Proof of an Asymptotic Formula for the Number of Labelled Regular Graphs , 1980, Eur. J. Comb..

[15]  David W. Walkup,et al.  Matchings in random regular bipartite digraphs , 1980, Discret. Math..

[16]  M. Held,et al.  A dynamic programming approach to sequencing problems , 1962, ACM National Meeting.

[17]  Alan M. Frieze,et al.  An algorithm for finding Hamilton cycles in random graphs , 1985, STOC '85.

[18]  David W. Walkup,et al.  On the Expected Value of a Random Assignment Problem , 1979, SIAM J. Comput..

[19]  Alan M. Frieze Parallel Algorithms for Finding Hamilton Cycles in Random Graphs , 1987, Inf. Process. Lett..

[20]  Alan M. Frieze Maximum matchings in a class of random graphs , 1986, J. Comb. Theory, Ser. B.

[21]  E. Upfal,et al.  On factors in random graphs , 1981 .

[22]  Vijay V. Vazirani,et al.  Matching is as easy as matrix inversion , 1987, STOC.

[23]  Richard M. Karp,et al.  An algorithm to solve the m × n assignment problem in expected time O(mn log n) , 1980, Networks.

[24]  C. Fortuin,et al.  Correlation inequalities on some partially ordered sets , 1971 .

[25]  Alan M. Frieze On large matchings and cycles in sparse random graphs , 1986, Discret. Math..

[26]  B. Bollobás The evolution of random graphs , 1984 .

[27]  Alan M. Frieze,et al.  Hamiltonian cycles in random regular graphs , 1984, J. Comb. Theory, Ser. B.

[28]  Eli Shamir,et al.  How many random edges make a graph hamiltonian? , 1983, Comb..