Multilevel Image Segmentation Using OptiMUSIG Activation Function with Fixed and Variable Thresholding: A Comparative Study

An optimized multilevel sigmoidal (OptiMUSIG) activation function for segmentation of multilevel images is presented. The OptiMUSIG activation function is generated from the optimized class boundaries of input images. Results of application of the function with fixed and variable thresholding mechanisms are demonstrated on two real life images. The proposed OptiMUSIG activation function is found to outperform the conventionalMUSIG activation function using both fixed and variable thresholds.

[1]  Zhengmao Ye,et al.  Gray level image processing using contrast enhancement and watershed segmentation with quantitative evaluation , 2008, 2008 International Workshop on Content-Based Multimedia Indexing.

[2]  Dana H. Brooks,et al.  Electrical imaging of the heart , 1997, IEEE Signal Process. Mag..

[3]  Santanu Chaudhury,et al.  A connectionist approach for clustering with applications in image analysis , 1994, IEEE Trans. Syst. Man Cybern..

[4]  David E. Goldberg,et al.  Genetic Algorithms in Search Optimization and Machine Learning , 1988 .

[5]  Boudewijn P. F. Lelieveldt,et al.  A multiresolution image segmentation technique based on pyramidal segmentation and fuzzy clustering , 2000, IEEE Trans. Image Process..

[6]  Javad Alirezaie,et al.  Automatic segmentation of cerebral MR images using artificial neural networks , 1996 .

[7]  Andrius Usinskas,et al.  A SURVEY OF GENETIC ALGORITHMS APPLICATIONS FOR IMAGE ENHANCEMENT AND SEGMENTATION , 2007 .

[8]  Aly A. Farag,et al.  Two-stage neural network for volume segmentation of medical images , 1997, Pattern Recognit. Lett..

[9]  Nawapak Eua-anant,et al.  Genetic algorithm approach to image segmentation using morphological operations , 1998, Proceedings 1998 International Conference on Image Processing. ICIP98 (Cat. No.98CB36269).

[10]  Martin Fleury,et al.  Computationally Efficient Quantitative Testing of Image Segmentation with a Genetic Algorithm , 2007, 2007 Third International IEEE Conference on Signal-Image Technologies and Internet-Based System.

[11]  Songde Ma,et al.  Bayesian learning, global competition and unsupervised image segmentation , 2000, Pattern Recognit. Lett..

[12]  Miki Haseyama,et al.  A genetic algorithm based image segmentation for image analysis , 1999, 1999 IEEE International Conference on Acoustics, Speech, and Signal Processing. Proceedings. ICASSP99 (Cat. No.99CH36258).

[13]  Sanghamitra Bandyopadhyay,et al.  Pattern classification with genetic algorithms , 1995, Pattern Recognit. Lett..

[14]  Jitendra Malik,et al.  Contour and Texture Analysis for Image Segmentation , 2001, International Journal of Computer Vision.

[15]  Teuvo Kohonen,et al.  Self-Organizing Maps , 2010 .

[16]  Sankar K. Pal,et al.  Self-organization for object extraction using a multilayer neural network and fuzziness measures , 1993, IEEE Trans. Fuzzy Syst..

[17]  Ujjwal Maulik,et al.  Self organizing neural network (SONN) based gray scale object extractor with a multilevel sigmoidal (MUSIG) activation function , 2008 .

[18]  Jharna Majumdar,et al.  Multi-modal image segmentation using a modified Hopfield neural network , 1998, Pattern Recognit..

[19]  Wook-Hyun Kim,et al.  Self-organization neural network for multiple texture image segmentation , 1999, Proceedings of IEEE. IEEE Region 10 Conference. TENCON 99. 'Multimedia Technology for Asia-Pacific Information Infrastructure' (Cat. No.99CH37030).