Study of the Hopf bifurcation in the Lorenz, Chen and Lü systems
暂无分享,去创建一个
[1] Y. Kuznetsov. Elements of Applied Bifurcation Theory , 2023, Applied Mathematical Sciences.
[2] Manuel Merino,et al. Chen's attractor exists if Lorenz repulsor exists: the Chen system is a special case of the Lorenz system. , 2013, Chaos.
[3] Guanrong Chen,et al. THE CHEN SYSTEM REVISITED , 2013 .
[4] J. Pade,et al. The Hopf bifurcation in the Lorenz model by the 2-timing method , 1986 .
[5] Colin Sparrow,et al. The Lorenz equations , 1982 .
[6] E. Lorenz. Deterministic nonperiodic flow , 1963 .
[7] S. Neukirch,et al. Integrals of motion and the shape of the attractor for the Lorenz model , 1997, chao-dyn/9702016.
[8] Marcelo Messias,et al. Dynamics at infinity and the existence of singularly degenerate heteroclinic cycles in the Lorenz system , 2009 .
[9] Xinfu Chen. Lorenz Equations Part I: Existence and Nonexistence of Homoclinic Orbits , 1996 .
[10] Guanrong Chen,et al. YET ANOTHER CHAOTIC ATTRACTOR , 1999 .
[11] Colin Sparrow,et al. T-points: A codimension two heteroclinic bifurcation , 1986 .
[12] Alejandro J. Rodríguez-Luis,et al. Centers on center manifolds in the Lorenz, Chen and Lü systems , 2014, Commun. Nonlinear Sci. Numer. Simul..
[13] Xiang Zhang,et al. Invariant algebraic surfaces of the Lorenz system , 2002 .
[14] Guanrong Chen,et al. Complex dynamics in Chen’s system☆ , 2006 .
[15] Alejandro J. Rodríguez-Luis,et al. The Lü system is a particular case of the Lorenz system , 2013 .
[16] Claudio Pessoa,et al. Centers on center manifolds in the Lü system , 2011 .
[17] Marek Kus,et al. Integrals of motion for the Lorenz system , 1983 .
[18] Yongguang Yu,et al. Hopf bifurcation analysis of the Lü system , 2004 .
[19] Zhuosheng Lü,et al. Codimension-2 Bautin bifurcation in the Lü system , 2007 .
[20] Guanrong Chen,et al. Local bifurcations of the Chen System , 2002, Int. J. Bifurc. Chaos.
[21] Enrique Ponce,et al. Normal Forms for Planar Systems With Nilpotent Linear Part , 1991 .
[22] Andrey Shilnikov,et al. Kneadings, Symbolic Dynamics and Painting Lorenz Chaos , 2012, Int. J. Bifurc. Chaos.
[23] Alejandro J. Rodríguez-Luis,et al. Analysis of the T-point-Hopf bifurcation in the Lorenz system , 2015, Commun. Nonlinear Sci. Numer. Simul..
[24] P. Holmes,et al. Nonlinear Oscillations, Dynamical Systems, and Bifurcations of Vector Fields , 1983, Applied Mathematical Sciences.
[25] Wladyslaw Kulpa,et al. THE POINCARE-MIRANDA THEOREM , 1997 .
[26] Roberto Barrio,et al. Bounds for the chaotic region in the Lorenz model , 2009 .
[27] Jinhu Lu,et al. A New Chaotic Attractor Coined , 2002, Int. J. Bifurc. Chaos.
[28] Roberto Barrio,et al. A three-parametric study of the Lorenz model , 2007 .
[29] Jaume Llibre,et al. Global Dynamics of the Lorenz System with Invariant Algebraic Surfaces , 2010, Int. J. Bifurc. Chaos.
[30] Martin Golubitsky,et al. Classification and Unfoldings of Degenerate Hopf Bifurcations , 1981 .
[31] Gennady A. Leonov,et al. Bounds for attractors and the existence of homoclinic orbits in the lorenz system , 2001 .
[32] Luis Fernando Mello,et al. Degenerate Hopf bifurcations in the Lü system , 2009 .
[33] Guanrong Chen,et al. On stability and bifurcation of Chen’s system , 2004 .
[34] Xiang Zhang,et al. Dynamics of the Lorenz system having an invariant algebraic surface , 2007 .
[35] Hiroshi Kokubu,et al. Existence of a Singularly Degenerate Heteroclinic Cycle in the Lorenz System and Its Dynamical Consequences: Part I , 2004 .
[36] Sir Peter Swinnerton-Dyer. The invariant algebraic surfaces of the Lorenz system , 2002, Mathematical Proceedings of the Cambridge Philosophical Society.
[37] Yongguang Yu,et al. Hopf bifurcation in the Lü system , 2003 .
[38] A. Rauh,et al. Analytical investigation of the hopf bifurcation in the Lorenz model , 1986 .
[39] Guanrong Chen,et al. A Note on Hopf bifurcation in Chen's System , 2003, Int. J. Bifurc. Chaos.
[40] M. Viana. What’s new on lorenz strange attractors? , 2000 .
[41] W. Tucker. The Lorenz attractor exists , 1999 .
[42] Bernd Krauskopf,et al. Global bifurcations of the Lorenz manifold , 2006 .
[43] Bernd Krauskopf,et al. Global invariant manifolds in the transition to preturbulence in the Lorenz system , 2011 .