Study of the Hopf bifurcation in the Lorenz, Chen and Lü systems

In this paper, we perform a complete study of the Hopf bifurcations in the three-parameter Lorenz system, $$\dot{x} = \sigma (y-x),\,\dot{y} = \rho x - y - xz,\,\dot{z} = -bz + xy$$x˙=σ(y-x),y˙=ρx-y-xz,z˙=-bz+xy, with $$\sigma , \rho , b \in \mathbb {R}$$σ,ρ,b∈R. On the one hand, we reobtain the results found in the literature for the Lorenz model when the three parameters are positive. On the other hand, we completely determine the loci of all the degeneracies exhibited by the Hopf bifurcation of the origin and of the nontrivial equilibria. In this last case, we demonstrate, among other things, that the first two Lyapunov coefficients simultaneously vanish in two codimension-three bifurcation points, giving rise in both cases to the coexistence of three periodic orbits involved in a cusp bifurcation. The analytical study that we carry out, where several complicated expressions have to be handled, successfully closes the problem of the Hopf bifurcations in the Lorenz system. Moreover, from our results, it is easy to obtain all the information on the Hopf bifurcations in the Chen and Lü systems, taking into account that they are, generically, particular cases of the Lorenz system, as can be seen by means of a linear scaling in time and state variables.

[1]  Y. Kuznetsov Elements of Applied Bifurcation Theory , 2023, Applied Mathematical Sciences.

[2]  Manuel Merino,et al.  Chen's attractor exists if Lorenz repulsor exists: the Chen system is a special case of the Lorenz system. , 2013, Chaos.

[3]  Guanrong Chen,et al.  THE CHEN SYSTEM REVISITED , 2013 .

[4]  J. Pade,et al.  The Hopf bifurcation in the Lorenz model by the 2-timing method , 1986 .

[5]  Colin Sparrow,et al.  The Lorenz equations , 1982 .

[6]  E. Lorenz Deterministic nonperiodic flow , 1963 .

[7]  S. Neukirch,et al.  Integrals of motion and the shape of the attractor for the Lorenz model , 1997, chao-dyn/9702016.

[8]  Marcelo Messias,et al.  Dynamics at infinity and the existence of singularly degenerate heteroclinic cycles in the Lorenz system , 2009 .

[9]  Xinfu Chen Lorenz Equations Part I: Existence and Nonexistence of Homoclinic Orbits , 1996 .

[10]  Guanrong Chen,et al.  YET ANOTHER CHAOTIC ATTRACTOR , 1999 .

[11]  Colin Sparrow,et al.  T-points: A codimension two heteroclinic bifurcation , 1986 .

[12]  Alejandro J. Rodríguez-Luis,et al.  Centers on center manifolds in the Lorenz, Chen and Lü systems , 2014, Commun. Nonlinear Sci. Numer. Simul..

[13]  Xiang Zhang,et al.  Invariant algebraic surfaces of the Lorenz system , 2002 .

[14]  Guanrong Chen,et al.  Complex dynamics in Chen’s system☆ , 2006 .

[15]  Alejandro J. Rodríguez-Luis,et al.  The Lü system is a particular case of the Lorenz system , 2013 .

[16]  Claudio Pessoa,et al.  Centers on center manifolds in the Lü system , 2011 .

[17]  Marek Kus,et al.  Integrals of motion for the Lorenz system , 1983 .

[18]  Yongguang Yu,et al.  Hopf bifurcation analysis of the Lü system , 2004 .

[19]  Zhuosheng Lü,et al.  Codimension-2 Bautin bifurcation in the Lü system , 2007 .

[20]  Guanrong Chen,et al.  Local bifurcations of the Chen System , 2002, Int. J. Bifurc. Chaos.

[21]  Enrique Ponce,et al.  Normal Forms for Planar Systems With Nilpotent Linear Part , 1991 .

[22]  Andrey Shilnikov,et al.  Kneadings, Symbolic Dynamics and Painting Lorenz Chaos , 2012, Int. J. Bifurc. Chaos.

[23]  Alejandro J. Rodríguez-Luis,et al.  Analysis of the T-point-Hopf bifurcation in the Lorenz system , 2015, Commun. Nonlinear Sci. Numer. Simul..

[24]  P. Holmes,et al.  Nonlinear Oscillations, Dynamical Systems, and Bifurcations of Vector Fields , 1983, Applied Mathematical Sciences.

[25]  Wladyslaw Kulpa,et al.  THE POINCARE-MIRANDA THEOREM , 1997 .

[26]  Roberto Barrio,et al.  Bounds for the chaotic region in the Lorenz model , 2009 .

[27]  Jinhu Lu,et al.  A New Chaotic Attractor Coined , 2002, Int. J. Bifurc. Chaos.

[28]  Roberto Barrio,et al.  A three-parametric study of the Lorenz model , 2007 .

[29]  Jaume Llibre,et al.  Global Dynamics of the Lorenz System with Invariant Algebraic Surfaces , 2010, Int. J. Bifurc. Chaos.

[30]  Martin Golubitsky,et al.  Classification and Unfoldings of Degenerate Hopf Bifurcations , 1981 .

[31]  Gennady A. Leonov,et al.  Bounds for attractors and the existence of homoclinic orbits in the lorenz system , 2001 .

[32]  Luis Fernando Mello,et al.  Degenerate Hopf bifurcations in the Lü system , 2009 .

[33]  Guanrong Chen,et al.  On stability and bifurcation of Chen’s system , 2004 .

[34]  Xiang Zhang,et al.  Dynamics of the Lorenz system having an invariant algebraic surface , 2007 .

[35]  Hiroshi Kokubu,et al.  Existence of a Singularly Degenerate Heteroclinic Cycle in the Lorenz System and Its Dynamical Consequences: Part I , 2004 .

[36]  Sir Peter Swinnerton-Dyer The invariant algebraic surfaces of the Lorenz system , 2002, Mathematical Proceedings of the Cambridge Philosophical Society.

[37]  Yongguang Yu,et al.  Hopf bifurcation in the Lü system , 2003 .

[38]  A. Rauh,et al.  Analytical investigation of the hopf bifurcation in the Lorenz model , 1986 .

[39]  Guanrong Chen,et al.  A Note on Hopf bifurcation in Chen's System , 2003, Int. J. Bifurc. Chaos.

[40]  M. Viana What’s new on lorenz strange attractors? , 2000 .

[41]  W. Tucker The Lorenz attractor exists , 1999 .

[42]  Bernd Krauskopf,et al.  Global bifurcations of the Lorenz manifold , 2006 .

[43]  Bernd Krauskopf,et al.  Global invariant manifolds in the transition to preturbulence in the Lorenz system , 2011 .