Light Manipulation in Metallic Nanowire Networks with Functional Connectivity

H.G. and A.F. contributed equally to this work. H.G. designed and performed the experimental research and fabricated and analyzed the samples used in the article. A.F. designed the theoretical research, developed the network approach based on functional connectivity, and performed FDTD simulations. M.D. performed the Rutherford backscattering experiments. F.C. suggested experiments and contributed to the interpretation. All authors contributed equally to the preparation of the manuscript. H. Galinski gratefully acknowledges financial support from the Size Matters! project, (TDA Capital, UK). Sincere thanks are given to the EMEZ (Electron Microscopy Center, ETH Zurich) and the FIRST clean-room team for their support. A. Fratalocchi and F. Capasso acknowledge funding from KAUST (Award No. CRG-1-2012-FRA-005). F. Capasso and H. Galinski acknowledge the support of Air Force Office of Scientific Research (MURI: FA9550-14-1-0389). The authors declare that they have no competing financial interests. H. Galinski thanks M. Fiebig and M. Lilienblum from the Laboratory for Multifunctional Ferroic Materials (ETH Zurich) for access to the micro-spectrophotometer. A. Fratalocchi thanks P. Magistretti for fruitful discussions about brain functions and neural networks. This work was performed in part at the Center of Nanoscale Systems (CNS), a member of the National Nanotechnology Coordinated Infrastructure Network (NNCI), which is supported by the National Science Foundation under NSF award no. 1541959. CNS is part of Harvard University.

[1]  Mark I. Stockman,et al.  CHAOS AND SPATIAL CORRELATIONS FOR DIPOLAR EIGENPROBLEMS , 1997 .

[2]  Matthew J. Rosseinsky,et al.  Advanced Functional Materials , 2015, Materials Science Forum.

[3]  Ran Liu,et al.  Electrochemically dealloyed platinum with hierarchical pore structure as highly active catalytic coating , 2015 .

[4]  Nader Engheta,et al.  Circuits with Light at Nanoscales: Optical Nanocircuits Inspired by Metamaterials , 2007, Science.

[5]  A. Yamilov,et al.  Using geometry to manipulate long-range correlation of light inside disordered media , 2015, 1505.02383.

[6]  A. El Mel,et al.  Unusual dealloying effect in gold/copper alloy thin films: the role of defects and column boundaries in the formation of nanoporous gold. , 2015, ACS applied materials & interfaces.

[7]  Andrea Fratalocchi,et al.  Dynamic light diffusion, three-dimensional Anderson localization and lasing in inverted opals , 2008 .

[8]  Zach DeVito,et al.  Opt , 2017 .

[9]  Federico Capasso,et al.  Ultra-thin perfect absorber employing a tunable phase change material , 2012 .

[10]  Brandon Redding,et al.  Speckle-free laser imaging using random laser illumination , 2011, Nature Photonics.

[11]  M. Döbeli,et al.  Dealloying of platinum-aluminum thin films: dynamics of pattern formation. , 2011, Physical review letters.

[12]  H. Atwater,et al.  Plasmonics for improved photovoltaic devices. , 2010, Nature materials.

[13]  Andrea Alù,et al.  Performing Mathematical Operations with Metamaterials , 2014, Science.

[14]  Alan M. Frieze,et al.  Random graphs , 2006, SODA '06.

[15]  Charles-Antoine Guérin,et al.  Maxwell-Garnett mixing rule in the presence of multiple scattering: Derivation and accuracy , 2005 .

[16]  S. Maier,et al.  Nanoporous Plasmonic Metamaterials , 2007 .

[17]  Michael Nastasi,et al.  Handbook of modern ion beam materials analysis , 1995 .

[18]  N. Yu,et al.  Light Propagation with Phase Discontinuities: Generalized Laws of Reflection and Refraction , 2011, Science.

[19]  Béla Bollobás,et al.  Random Graphs: Notation , 2001 .

[20]  D. Bhattacharyya,et al.  Mechanical properties of nanocrystalline nanoporous platinum , 2016 .

[21]  Steven G. Johnson,et al.  Photonic Crystals: Molding the Flow of Light , 1995 .

[22]  Alexandre Aubry,et al.  Electromagnetic contribution to surface-enhanced Raman scattering from rough metal surfaces: A transformation optics approach , 2011 .

[23]  R Pastor-Satorras,et al.  Dynamical and correlation properties of the internet. , 2001, Physical review letters.

[24]  M. Ritter,et al.  Porous Gold with a Nested‐Network Architecture and Ultrafine Structure , 2015 .

[25]  J. Parsons,et al.  Experimental realization of an epsilon-near-zero metamaterial at visible wavelengths , 2013, Nature Photonics.

[26]  A. Kildishev,et al.  Broadband Light Bending with Plasmonic Nanoantennas , 2012, Science.

[27]  J. Erlebacher,et al.  Dealloying of noble-metal alloy nanoparticles. , 2014, Nano letters.

[28]  E. Kandel,et al.  Proceedings of the National Academy of Sciences of the United States of America. Annual subject and author indexes. , 1990, Proceedings of the National Academy of Sciences of the United States of America.

[29]  R. Rosenfeld Nature , 2009, Otolaryngology--head and neck surgery : official journal of American Academy of Otolaryngology-Head and Neck Surgery.

[30]  H. Haus Waves and fields in optoelectronics , 1983 .

[31]  N. Yu,et al.  Flat optics with designer metasurfaces. , 2014, Nature materials.

[32]  L Angelani,et al.  Ultrashort pulse propagation and the Anderson localization. , 2008, Optics letters.

[33]  V. Shalaev Nonlinear Optics of Random Media: Fractal Composites and Metal-Dielectric Films , 1999 .

[34]  Boris E. Burakov,et al.  Advanced Materials , 2019, Springer Proceedings in Physics.

[35]  P. Nordlander,et al.  A Hybridization Model for the Plasmon Response of Complex Nanostructures , 2003, Science.

[36]  M. Zäch,et al.  Oscillatory optical response of an amorphous two-dimensional array of gold nanoparticles. , 2012, Physical review letters.

[37]  H. Ehrenreich,et al.  Optical Properties of Aluminum , 1963 .

[38]  Hui Cao,et al.  Biomimetic Isotropic Nanostructures for Structural Coloration , 2009, Advanced materials.

[39]  Yan‐Bing He,et al.  Chemical Dealloying Derived 3D Porous Current Collector for Li Metal Anodes , 2016, Advanced materials.

[40]  Antonio-José Almeida,et al.  NAT , 2019, Springer Reference Medizin.

[41]  R. Spolenak,et al.  Dealloying of platinum-aluminum thin films: Electrode performance , 2011, 1108.5132.

[42]  K. J. Dean,et al.  Waves and Fields in Optoelectronics: Prentice-Hall Series in Solid State Physical Electronics , 1984 .

[43]  M. Käll,et al.  Quasi-isotropic surface plasmon polariton generation through near-field coupling to a penrose pattern of silver nanoparticles. , 2014, ACS nano.

[44]  Albert-László Barabási,et al.  Error and attack tolerance of complex networks , 2000, Nature.

[45]  Mark I. Stockman,et al.  Plasmonics: Theory and Applications , 2013 .

[46]  S. Snyder,et al.  Proceedings of the National Academy of Sciences , 1999 .

[47]  E. Stoll,et al.  Monte Carlo Calculation for Electromagnetic-Wave Scattering from Random Rough Surfaces , 1984 .

[48]  L. Christophorou Science , 2018, Emerging Dynamics: Science, Energy, Society and Values.

[49]  Volker J. Sorger,et al.  Nano-optics gets practical. , 2015, Nature nanotechnology.

[50]  Thomas F. Krauss,et al.  Enhanced energy storage in chaotic optical resonators , 2013, Nature Photonics.

[51]  V. Shalaev,et al.  NONLINEAR OPTICS OF RANDOM METAL-DIELECTRIC FILMS , 1998 .

[52]  M. Wegener,et al.  Past achievements and future challenges in the development of three-dimensional photonic metamaterials , 2011 .

[53]  Martin Wegener,et al.  Optical Metamaterials—More Bulky and Less Lossy , 2010, Science.

[54]  A. Vespignani,et al.  The architecture of complex weighted networks. , 2003, Proceedings of the National Academy of Sciences of the United States of America.

[55]  L. Gauckler,et al.  Pt-based nanowire networks with enhanced oxygen-reduction activity , 2014, 1403.4665.

[56]  P. Nordlander,et al.  The Fano resonance in plasmonic nanostructures and metamaterials. , 2010, Nature materials.

[57]  Perfect interferenceless absorption at infrared frequencies by a van der Waals crystal , 2015, 1510.03838.

[58]  M. Arnold,et al.  Effect of precursor stoichiometry on the morphology of nanoporous platinum sponges. , 2014, ACS applied materials & interfaces.

[59]  Thomas F. Krauss,et al.  Triggering extreme events at the nanoscale in photonic seas , 2015, Nature Physics.

[60]  H. Raether Surface Plasmons on Smooth and Rough Surfaces and on Gratings , 1988 .