Langerhans cells are generated by two distinct PU.1-dependent transcriptional networks

Langerhans cell homeostasis and differentiation depends on PU.1, the latter via regulation of TGF-β–dependent binding of PU.1 to the regulatory elements of RUNX3.

[1]  S. Nutt,et al.  CD8α+ DCs can be induced in the absence of transcription factors Id2, Nfil3, and Batf3. , 2013, Blood.

[2]  Gabrielle T. Belz,et al.  Transcriptional programming of the dendritic cell network , 2013, Nature Reviews Immunology.

[3]  D. Roop,et al.  A Role for TGF (cid:98) 1 in Langerhans Cell Biology Further Characterization of the Epidermal Langerhans Cell Defect in TGF (cid:98) 1 Null Mice , 1997 .

[4]  F. Ginhoux,et al.  Stroma-derived interleukin-34 controls the development and maintenance of langerhans cells and the maintenance of microglia. , 2012, Immunity.

[5]  F. Tacke,et al.  Two distinct types of Langerhans cells populate the skin during steady state and inflammation. , 2012, Immunity.

[6]  S. Turner,et al.  IRF4 Promotes Cutaneous Dendritic Cell Migration to Lymph Nodes during Homeostasis and Inflammation , 2012, The Journal of Immunology.

[7]  H. Mages,et al.  Expression of XCR1 Characterizes the Batf3-Dependent Lineage of Dendritic Cells Capable of Antigen Cross-Presentation , 2012, Front. Immun..

[8]  Keisuke Nagao,et al.  Stress-induced production of chemokines by hair follicles regulates the trafficking of dendritic cells in skin , 2012, Nature Immunology.

[9]  M. Diamond,et al.  IL-34 is a tissue-restricted ligand of CSF1R required for the development of Langerhans cells and microglia , 2012, Nature Immunology.

[10]  F. Ginhoux,et al.  Adult Langerhans cells derive predominantly from embryonic fetal liver monocytes with a minor contribution of yolk sac–derived macrophages , 2012, The Journal of experimental medicine.

[11]  M. Gaiser,et al.  Cancer-associated epithelial cell adhesion molecule (EpCAM; CD326) enables epidermal Langerhans cell motility and migration in vivo , 2012, Proceedings of the National Academy of Sciences.

[12]  S. Nutt,et al.  Transcriptional programming of the dendritic cell network , 2012, Nature Reviews Immunology.

[13]  Even Fossum,et al.  Cutting Edge: Expression of XCR1 Defines Mouse Lymphoid-Tissue Resident and Migratory Dendritic Cells of the CD8α+ Type , 2011, The Journal of Immunology.

[14]  E. Unanue,et al.  Batf3-Dependent CD11blow/− Peripheral Dendritic Cells Are GM-CSF-Independent and Are Not Required for Th Cell Priming after Subcutaneous Immunization , 2011, PloS one.

[15]  David A. Orlando,et al.  Master Transcription Factors Determine Cell-Type-Specific Responses to TGF-β Signaling , 2011, Cell.

[16]  M. Merad,et al.  Dendritic cell and macrophage heterogeneity in vivo. , 2011, Immunity.

[17]  Damien Chaussabel,et al.  IRF8 mutations and human dendritic-cell immunodeficiency. , 2011, The New England journal of medicine.

[18]  K. Clément,et al.  Krüppel-like factor 4 regulates macrophage polarization. , 2011, The Journal of clinical investigation.

[19]  Gordon K Smyth,et al.  Id2 expression delineates differential checkpoints in the genetic program of CD8α+ and CD103+ dendritic cell lineages , 2011, The EMBO journal.

[20]  S. Millar,et al.  Wnt Signaling Influences the Development of Murine Epidermal Langerhans Cells , 2011, The Journal of investigative dermatology.

[21]  Li Wu,et al.  The Acquisition of Antigen Cross-Presentation Function by Newly Formed Dendritic Cells , 2011, The Journal of Immunology.

[22]  Chen-feng Qi,et al.  IFN Regulatory Factor 8 Restricts the Size of the Marginal Zone and Follicular B Cell Pools , 2011, The Journal of Immunology.

[23]  Aleksandar Dakic,et al.  The transcription factor PU.1 controls dendritic cell development and Flt3 cytokine receptor expression in a dose-dependent manner. , 2010, Immunity.

[24]  K. Murphy,et al.  Peripheral CD103+ dendritic cells form a unified subset developmentally related to CD8α+ conventional dendritic cells , 2010, The Journal of experimental medicine.

[25]  J. Ragoussis,et al.  Identification and characterization of enhancers controlling the inflammatory gene expression program in macrophages. , 2010, Immunity.

[26]  P. Chambon,et al.  Langerhans cell (LC) proliferation mediates neonatal development, homeostasis, and inflammation-associated expansion of the epidermal LC network , 2009, The Journal of experimental medicine.

[27]  F. Ginhoux,et al.  The origin and development of nonlymphoid tissue CD103+ DCs , 2009, The Journal of experimental medicine.

[28]  F. Ginhoux,et al.  Origin, homeostasis and function of Langerhans cells and other langerin-expressing dendritic cells , 2008, Nature Reviews Immunology.

[29]  E. Unanue,et al.  Batf3 Deficiency Reveals a Critical Role for CD8α+ Dendritic Cells in Cytotoxic T Cell Immunity , 2008, Science.

[30]  T. Geijtenbeek,et al.  Langerhans cells and viral immunity , 2008, European journal of immunology.

[31]  F. Ginhoux,et al.  FMS-like tyrosine kinase 3 is required for dendritic cell development in peripheral lymphoid tissues , 2008, Nature Immunology.

[32]  K. Hogquist,et al.  Identification of a novel population of Langerin+ dendritic cells , 2007, The Journal of experimental medicine.

[33]  Melanie Bahlo,et al.  Development of plasmacytoid and conventional dendritic cell subtypes from single precursor cells derived in vitro and in vivo , 2007, Nature Immunology.

[34]  D. Jarrossay,et al.  Identification of clonogenic common Flt3+M-CSFR+ plasmacytoid and conventional dendritic cell progenitors in mouse bone marrow , 2007, Nature Immunology.

[35]  B. Reizis,et al.  Notch–RBP-J signaling controls the homeostasis of CD8− dendritic cells in the spleen , 2007, The Journal of experimental medicine.

[36]  M. Manz,et al.  Flt3 in Regulation of Type I Interferon‐Producing Cell and Dendritic Cell Development , 2007, Annals of the New York Academy of Sciences.

[37]  Li Wu,et al.  Is PU.1 a dosage-sensitive regulator of haemopoietic lineage commitment and leukaemogenesis? , 2007, Trends in immunology.

[38]  Qiong Shen,et al.  Transcription factor IRF4 controls plasma cell differentiation and class-switch recombination , 2006, Nature Immunology.

[39]  H. Strobl,et al.  Differential involvement of PU.1 and Id2 downstream of TGF-beta1 during Langerhans-cell commitment. , 2006, Blood.

[40]  F. Ginhoux,et al.  Langerhans cells arise from monocytes in vivo , 2006, Nature Immunology.

[41]  L. Mazzucchelli,et al.  Inhibition of Natural Type I IFN-Producing and Dendritic Cell Development by a Small Molecule Receptor Tyrosine Kinase Inhibitor with Flt3 Affinity1 , 2005, The Journal of Immunology.

[42]  Li Wu,et al.  PU.1 regulates the commitment of adult hematopoietic progenitors and restricts granulopoiesis , 2005, The Journal of experimental medicine.

[43]  Donald Metcalf,et al.  Dynamic regulation of PU.1 expression in multipotent hematopoietic progenitors , 2005, The Journal of experimental medicine.

[44]  Yoshiaki Ito Oncogenic potential of the RUNX gene family: ‘Overview’ , 2004, Oncogene.

[45]  F. Belardelli,et al.  ICSBP is critically involved in the normal development and trafficking of Langerhans cells and dermal dendritic cells. , 2004, Blood.

[46]  A. Elbe-Bürger,et al.  Ontogeny of Langerin/CD207 expression in the epidermis of mice. , 2004, The Journal of investigative dermatology.

[47]  Steffen Jung,et al.  Runx3 regulates mouse TGF‐β‐mediated dendritic cell function and its absence results in airway inflammation , 2004, The EMBO journal.

[48]  J. Bravo,et al.  Energetic Contribution of Residues in the Runx1 Runt Domain to DNA Binding* , 2003, Journal of Biological Chemistry.

[49]  Steffen Jung,et al.  Blood monocytes consist of two principal subsets with distinct migratory properties. , 2003, Immunity.

[50]  S. Rose-John,et al.  Transcriptional profiling identifies Id2 function in dendritic cell development , 2003, Nature Immunology.

[51]  I. Weissman,et al.  Langerhans cells renew in the skin throughout life under steady-state conditions , 2003, Nature Immunology.

[52]  D. Tenen,et al.  Reciprocal Roles for CCAAT/Enhancer Binding Protein (C/EBP) and PU.1 Transcription Factors in Langerhans Cell Commitment , 2002, The Journal of experimental medicine.

[53]  Yoshiaki Ito,et al.  In vitro analyses of known and novel RUNX1/AML1 mutations in dominant familial platelet disorder with predisposition to acute myelogenous leukemia: implications for mechanisms of pathogenesis. , 2002, Blood.

[54]  B. Pulendran,et al.  Mice lacking flt3 ligand have deficient hematopoiesis affecting hematopoietic progenitor cells, dendritic cells, and natural killer cells. , 2000, Blood.

[55]  A. Sher,et al.  Analysis of Fractalkine Receptor CX3CR1 Function by Targeted Deletion and Green Fluorescent Protein Reporter Gene Insertion , 2000, Molecular and Cellular Biology.

[56]  W. Knapp,et al.  TGF-β1 regulation of dendritic cells , 1999 .

[57]  W. Knapp,et al.  TGF-beta1 regulation of dendritic cells. , 1999, Microbes and infection.

[58]  F. Geissmann,et al.  Transforming Growth Factor (cid:98) 1, in the Presence of Granulocyte/Macrophage Colony-stimulating Factor and Interleukin 4, Induces Differentiation of Human Peripheral Blood Monocytes into Dendritic Langerhans Cells , 2022 .

[59]  D. Roop,et al.  A role for TGFbeta1 in langerhans cell biology. Further characterization of the epidermal Langerhans cell defect in TGFbeta1 null mice. , 1997, The Journal of clinical investigation.

[60]  T. Mak,et al.  Requirement for the Transcription Factor LSIRF/IRF4 for Mature B and T Lymphocyte Function , 1997, Science.

[61]  J. Letterio,et al.  A Role for Endogenous Transforming Growth Factor β1 in Langerhans Cell Biology:  The Skin of   Transforming Growth Factor β1 Null Mice Is Devoid of  Epidermal Langerhans Cells , 1996, The Journal of experimental medicine.

[62]  J. Waring,et al.  Immunodeficiency and Chronic Myelogenous Leukemia-like Syndrome in Mice with a Targeted Mutation of the ICSBP Gene , 1996, Cell.

[63]  R. Steinman,et al.  Identification of macrophages and dendritic cells in the osteopetrotic (op/op) mouse. , 1993, Journal of cell science.

[64]  R. Zukin,et al.  The σ Receptor , 1988 .

[65]  T. Kobayasi [The Langerhans cells]. , 1975, Ugeskrift for laeger.

[66]  B. Pulendran,et al.  Mice lacking flt 3 ligand have deficient hematopoiesis affecting hematopoietic progenitor cells , dendritic cells , and natural killer cells , 2022 .