Linear Optimal FIR Estimation of Discrete Time-Invariant State-Space Models
暂无分享,去创建一个
[1] A. Jazwinski. Limited memory optimal filtering , 1968 .
[2] Stephen P. Boyd,et al. Receding Horizon Control , 2011, IEEE Control Systems.
[3] T. Başar,et al. A New Approach to Linear Filtering and Prediction Problems , 2001 .
[4] Gene H. Golub,et al. Matrix computations (3rd ed.) , 1996 .
[5] Chi-Tsong Chen,et al. One-Dimensional Digital Signal Processing , 1979 .
[6] George Epstein. On finite-memory recursive filters (Corresp.) , 1970, IEEE Trans. Inf. Theory.
[7] Wook Hyun Kwon,et al. Minimum Variance FIR Smoothers for Discrete-Time State Space Models , 2007, IEEE Signal Processing Letters.
[8] Henry Stark,et al. Probability, Random Processes, and Estimation Theory for Engineers , 1995 .
[9] Yuriy S. Shmaliy,et al. Unbiased FIR Filtering of Discrete-Time Polynomial State-Space Models , 2009, IEEE Transactions on Signal Processing.
[10] Yuriy S. Shmaliy,et al. Optimal FIR filtering of the clock time errors , 2008 .
[11] Li Danyang,et al. Optimal state estimation without the requirement of a priori statistics information of the initial state , 1994 .
[12] Wook Hyun Kwon,et al. A receding horizon unbiased FIR filter for discrete-time state space models , 2002, Autom..
[13] S. Hwang. Minimum uncorrelated unit noise in state-space digital filtering , 1977 .
[14] Yuriy S. Shmaliy,et al. An unbiased p-step predictive FIR filter for a class of noise-free discrete-time models with independently observed states , 2009, Signal Image Video Process..
[15] Yuriy S. Shmaliy,et al. Optimal Gains of FIR Estimators for a Class of Discrete-Time State-Space Models , 2008, IEEE Signal Processing Letters.
[16] W. Kwon,et al. Receding Horizon Control: Model Predictive Control for State Models , 2005 .
[17] P. J. Buxbaum. Fixed-memory recursive filters (Corresp.) , 1974, IEEE Trans. Inf. Theory.
[18] J. L. Hock,et al. An exact recursion for the composite nearest‐neighbor degeneracy for a 2×N lattice space , 1984 .
[19] Fred C. Schweppe,et al. Uncertain dynamic systems , 1973 .
[20] L. Zadeh,et al. An Extension of Wiener's Theory of Prediction , 1950 .
[21] Wook Hyun Kwon,et al. A receding horizon Kalman FIR filter for discrete time-invariant systems , 1999, IEEE Trans. Autom. Control..
[22] G. J. Bierman. Fixed memory least squares filtering , 1975 .
[23] Ji-Woong Choi,et al. An FIR Channel Estimation Filter with Robustness to Channel Mismatch Condition , 2008, IEEE Transactions on Broadcasting.
[24] Yuriy S. Shmaliy,et al. Optimal Synchronization of Local Clocks by GPS 1PPS Signals Using Predictive FIR Filters , 2009, IEEE Transactions on Instrumentation and Measurement.
[25] Yuriy S. Shmaliy,et al. Optimal horizons for a one-parameter family of unbiased FIR filters , 2008, Digit. Signal Process..
[26] Kent R. Johnson,et al. Optimum, linear, discrete filtering of signals containing a nonrandom component , 1956, IRE Trans. Inf. Theory.
[27] N. Wiener. The Wiener RMS (Root Mean Square) Error Criterion in Filter Design and Prediction , 1949 .
[28] Norbert Wiener,et al. Extrapolation, Interpolation, and Smoothing of Stationary Time Series , 1964 .
[29] Y.S. Shmaliy,et al. An unbiased FIR filter for TIE model of a local clock in applications to GPS-based timekeeping , 2006, IEEE Transactions on Ultrasonics, Ferroelectrics and Frequency Control.
[30] M. N. Shanmukha Swamy,et al. A nonlinear adaptive filter for narrowband interference mitigation in spread spectrum systems , 2005, Signal Process..
[31] Jay H. Lee,et al. Receding Horizon Recursive State Estimation , 1993, 1993 American Control Conference.
[32] Robert H. Halstead,et al. Matrix Computations , 2011, Encyclopedia of Parallel Computing.
[33] T. Kailath,et al. An innovations approach to least-squares estimation--Part II: Linear smoothing in additive white noise , 1968 .
[34] Visa Koivunen,et al. Detection and Tracking of MIMO Propagation Path Parameters Using State-Space Approach , 2009, IEEE Transactions on Signal Processing.
[35] Leiba Rodman,et al. Algebraic Riccati equations , 1995 .
[36] N. F. Toda,et al. Divergence in the Kalman Filter , 1967 .
[37] Wook Hyun Kwon,et al. Optimal FIR filters for time-varying state-space models , 1990 .
[38] Yuriy S. Shmaliy,et al. A thinning algorithm for GPS-based unbiased FIR estimation of a clock TIE model , 2008 .
[39] W. Kwon,et al. Equivalence of finite memory filters , 1994 .
[40] Jinhong Yuan,et al. Joint Channel Tracking and Decoding for BICM–OFDM Systems Using Consistency Tests and Adaptive Detection Selection , 2009, IEEE Transactions on Vehicular Technology.
[41] Alfred M. Bruckstein,et al. Recursive limited memory filtering and scattering theory , 1985, IEEE Trans. Inf. Theory.
[42] N. Levinson. The Wiener (Root Mean Square) Error Criterion in Filter Design and Prediction , 1946 .
[43] Frédéric Lehmann,et al. Blind turbo-detection in the presence of phase noise , 2009, IET Commun..
[44] Stephen Yurkovich,et al. Fuzzy Control , 1997 .
[45] Yuriy S. Shmaliy,et al. FIR Smoothing of Discrete-Time Polynomial Signals in State Space , 2010, IEEE Transactions on Signal Processing.
[46] Wook Hyun Kwon,et al. FIR filters and recursive forms for discrete-time state-space models , 1987, Autom..
[47] R. E. Kalman,et al. New Results in Linear Filtering and Prediction Theory , 1961 .
[48] L. Ljung,et al. Extended Levinson and Chandrasekhar equations for general discrete-time linear estimation problems , 1978 .
[49] Gerald J. Bierman. Fixed memory least squares filtering (Corresp.) , 1975, IEEE Trans. Inf. Theory.
[50] Y. Shmaliy,et al. Efficient predictive estimator for holdover in GPS-based clock synchronization , 2008, IEEE Transactions on Ultrasonics, Ferroelectrics and Frequency Control.
[51] C. Brezinski. Interpolation and Extrapolation , 2001 .