Association of Chromosome 9p21 With Subsequent Coronary Heart Disease Events

Background: Genetic variation at chromosome 9p21 is a recognized risk factor for coronary heart disease (CHD). However, its effect on disease progression and subsequent events is unclear, raising questions about its value for stratification of residual risk. Methods: A variant at chromosome 9p21 (rs1333049) was tested for association with subsequent events during follow-up in 103 357 Europeans with established CHD at baseline from the GENIUS-CHD (Genetics of Subsequent Coronary Heart Disease) Consortium (73.1% male, mean age 62.9 years). The primary outcome, subsequent CHD death or myocardial infarction (CHD death/myocardial infarction), occurred in 13 040 of the 93 115 participants with available outcome data. Effect estimates were compared with case/control risk obtained from the CARDIoGRAMplusC4D consortium (Coronary Artery Disease Genome-wide Replication and Meta-analysis [CARDIoGRAM] plus The Coronary Artery Disease [C4D] Genetics) including 47 222 CHD cases and 122 264 controls free of CHD. Results: Meta-analyses revealed no significant association between chromosome 9p21 and the primary outcome of CHD death/myocardial infarction among those with established CHD at baseline (GENIUS-CHD odds ratio, 1.02; 95% CI, 0.99–1.05). This contrasted with a strong association in CARDIoGRAMPlusC4D odds ratio 1.20; 95% CI, 1.18–1.22; P for interaction <0.001 compared with the GENIUS-CHD estimate. Similarly, no clear associations were identified for additional subsequent outcomes, including all-cause death, although we found a modest positive association between chromosome 9p21 and subsequent revascularization (odds ratio, 1.07; 95% CI, 1.04–1.09). Conclusions: In contrast to studies comparing individuals with CHD to disease-free controls, we found no clear association between genetic variation at chromosome 9p21 and risk of subsequent acute CHD events when all individuals had CHD at baseline. However, the association with subsequent revascularization may support the postulated mechanism of chromosome 9p21 for promoting atheroma development.

Yan V. Sun | P. Deloukas | T. Lehtimäki | E. Boerwinkle | C. Held | B. Horne | N. Samani | P. Braund | J. Carlquist | Jeffrey L. Anderson | H. Brenner | A. Hingorani | F. Van de Werf | V. Cameron | R. Doughty | A. Algra | J. Spertus | A. Quyyumi | D. Girelli | O. Olivieri | N. Martinelli | E. Hagström | N. Eriksson | G. Condorelli | N. Sattar | D. Lambrechts | A. Metspalu | P. Almgren | O. Melander | D. Ardissino | P. Lotufo | W. März | C. Nelson | S. Hazen | U. de Faire | M. Sanak | M. Scholz | J. Brophy | J. Tardif | J. Jukema | F. Dudbridge | J. Smith | R. McPherson | J. van Setten | M. Kähönen | Julie A. Johnson | B. Gigante | K. Leander | P. van der Harst | A. Pereira | C. Ballantyne | C. Lang | M. Heydarpour | M. Dubé | S. Body | C. Palmer | M. Kleber | L. Lyytikäinen | A. Siegbahn | L. Wallentin | J. Muhlestein | R. Płoski | H. Hemingway | G. Paré | J. Engert | C. Pepine | K. Fox | S. Virani | M. Lokki | J. Sinisalo | S. Trompet | S. W. van der Laan | P. D. de Jong | G. Delgado | D. Stott | I. Ford | G. Pasterkamp | F. Asselbergs | G. D. de Borst | K. Nikus | M. Holmes | N. Fitzpatrick | R. Cooper-DeHoff | Y. Gong | H. Allayee | B. Mahmoodi | Y. van der Graaf | L. Foco | C. Briguori | J. Thiery | W. Szczeklik | K. Kamiński | U. Mons | J. Hartiala | H. Behlouli | L. Pilote | O. Klungel | F. Visseren | T. Bergmeijer | J. T. ten Berg | S. James | J. Waltenberger | D. Lindholm | J. Deanfield | K. Direk | R. Burkhardt | A. Teren | A. Stewart | B. Boeckx | E. Wauters | J. Hubacek | C. Bezzina | N. Marziliano | A. Richards | V. Tragante | A. H. Maitland‐van der Zee | M. Tanck | C. Carpeggiani | M. Andreassi | A. Timmis | A. Wilde | D. Levin | S. Cresci | K. Carruthers | I. Hoefer | B. Arsenault | L. Howe | A. Åkerblom | C. M. Gijsberts | G. Opolski | P. Lenzini | E. Vlachopoulou | G. Thanassoulis | A. Schmidt | J. Muehlschlegel | L. Breitling | B. Lagerqvist | W. Pepiński | I. Mordi | A. Leiherer | H. Drexel | J. Laurikka | P. Kuukasjärvi | W. Tang | L. Dufresne | G. Casu | P. Bogaty | V. Lee | C. Saely | Natalie K. Fitzpatrick | A. Pilbrow | M. Kiliszek | J. Kettner | Ayman Samman-Tahhan | P. Sandesara | N. E. Duarte | D. Kofink | E. Baranova | R. McCubrey | A. Szpakowicz | M. Kaczor | Ragnar O. Vilmundarson | G. Hovingh | Vinicius Tragante | C. Viviani Anselmi | Maris Alver | W. Pepinski | R. Patel | P. van der harst | J. Piťha | Chris Newton Cheh | Yan V. Sun | M. Kähönen | C. Gijsberts | C. Nelson | A. Richards | C. Palmer | G. Hovingh

[1]  Yan V. Sun,et al.  Subsequent Event Risk in Individuals With Established Coronary Heart Disease , 2019, Circulation. Genomic and precision medicine.

[2]  P. Deloukas,et al.  Impact of Selection Bias on Estimation of Subsequent Event Risk , 2017, Circulation. Cardiovascular genetics.

[3]  O. Franco,et al.  Genome-Wide Association Study for Incident Myocardial Infarction and Coronary Heart Disease in Prospective Cohort Studies: The CHARGE Consortium , 2013, PloS one.

[4]  Gabor T. Marth,et al.  A global reference for human genetic variation , 2015, Nature.

[5]  J. Danesh,et al.  A comprehensive 1000 Genomes-based genome-wide association meta-analysis of coronary artery disease , 2016 .

[6]  A. Hingorani,et al.  Genetic Variants at Chromosome 9p21 and Risk of First Versus Subsequent Coronary Heart Disease Events , 2014, Journal of the American College of Cardiology.

[7]  F. Van de Werf,et al.  Influence of 23 coronary artery disease variants on recurrent myocardial infarction or cardiac death: the GRACE Genetics Study. , 2013, European heart journal.

[8]  Erling Falk,et al.  Update on acute coronary syndromes: the pathologists' view. , 2013, European heart journal.

[9]  T. Assimes,et al.  Association between the chromosome 9p21 locus and angiographic coronary artery disease burden: a collaborative meta-analysis. , 2013, Journal of the American College of Cardiology.

[10]  E. Boerwinkle,et al.  Chromosome 9p21 single nucleotide polymorphisms are not associated with recurrent myocardial infarction in patients with established coronary artery disease. , 2012, Circulation journal : official journal of the Japanese Circulation Society.

[11]  J. Spertus,et al.  Chromosome 9p21 Haplotypes and Prognosis in White and Black Patients With Coronary Artery Disease , 2011, Circulation. Cardiovascular genetics.

[12]  M. Nalls,et al.  The Effect of Survival Bias on Case-Control Genetic Association Studies of Highly Lethal Diseases , 2011, Circulation. Cardiovascular genetics.

[13]  Issa J Dahabreh,et al.  Index event bias as an explanation for the paradoxes of recurrence risk research. , 2011, JAMA.

[14]  T. Assimes,et al.  Identification of ADAMTS7 as a novel locus for coronary atherosclerosis and association of ABO with myocardial infarction in the presence of coronary atherosclerosis: two genome-wide association studies , 2011, The Lancet.

[15]  V. Cameron,et al.  A Common Variant at Chromosome 9P21.3 Is Associated With Age of Onset of Coronary Disease but Not Subsequent Mortality , 2010, Circulation. Cardiovascular genetics.

[16]  S. Cole,et al.  Illustrating bias due to conditioning on a collider. , 2010, International journal of epidemiology.

[17]  G. Palomaki,et al.  Association between 9p21 genomic markers and heart disease: a meta-analysis. , 2010, JAMA.

[18]  Jonathan C. Cohen,et al.  Targeted Deletion of the 9p21 Noncoding Coronary Artery Disease Risk Interval in Mice , 2010, Nature.

[19]  B. Horne,et al.  Association of Variation in the Chromosome 9p21 Locus With Myocardial Infarction Versus Chronic Coronary Artery Disease , 2008, Circulation. Cardiovascular genetics.

[20]  C. Gieger,et al.  Genomewide association analysis of coronary artery disease. , 2007, The New England journal of medicine.

[21]  A. Gylfason,et al.  A Common Variant on Chromosome 9p21 Affects the Risk of Myocardial Infarction , 2007, Science.

[22]  Jonathan C. Cohen,et al.  A Common Allele on Chromosome 9 Associated with Coronary Heart Disease , 2007, Science.