Porous media: The Muskat problem in three dimensions

[1]  T. Overton 1972 , 1972, Parables of Sun Light.

[2]  A. Córdoba,et al.  The Rayleigh-Taylor condition for the evolution of irrotational fluid interfaces , 2009, Proceedings of the National Academy of Sciences.

[3]  D. Córdoba,et al.  Contour Dynamics of Incompressible 3-D Fluids in a Porous Medium with Different Densities , 2007 .

[4]  G. Taylor,et al.  The penetration of a fluid into a porous medium or Hele-Shaw cell containing a more viscous liquid , 1958, Proceedings of the Royal Society of London. Series A. Mathematical and Physical Sciences.

[5]  David M. Ambrose,et al.  Well-posedness of two-phase Darcy flow in 3D , 2007 .

[6]  A. Córdoba,et al.  Interface evolution: the Hele-Shaw and Muskat problems , 2008, 0806.2258.

[7]  D. Córdoba,et al.  A Maximum Principle for the Muskat Problem for Fluids with Different Densities , 2007, 0712.1090.

[8]  E. Sanchez-Palencia,et al.  Homogenization Techniques for Composite Media , 1987 .

[9]  R. Caflisch,et al.  Global existence, singular solutions, and ill‐posedness for the Muskat problem , 2004 .

[10]  Joachim Escher,et al.  Classical solutions for Hele-Shaw models with surface tension , 1997, Advances in Differential Equations.

[11]  On the Boundary Behavior of Minimal Surfaces. , 1951, Proceedings of the National Academy of Sciences of the United States of America.

[12]  Mary C. Pugh,et al.  Global solutions for small data to the Hele-Shaw problem , 1993 .

[13]  A. Córdoba,et al.  A pointwise estimate for fractionary derivatives with applications to partial differential equations , 2003, Proceedings of the National Academy of Sciences of the United States of America.

[14]  Craig T Simmons,et al.  The compleat Darcy: New lessons learned from the first English translation of les fontaines publiques de la Ville de Dijon , 2005, Ground water.