3alpha-Hydroxysteroid dehydrogenase/carbonyl reductase from Comamonas testosteroni: biological significance, three-dimensional structure and gene regulation.

3alpha-Hydroxysteroid dehydrogenase/carbonyl reductase (3alpha-HSD/CR) catalyses the oxidoreduction at carbon 3 of steroid hormones and is postulated to initiate the complete mineralisation of the steroid nucleus to CO(2) and H(2)O in Comamonas testosteroni. The enzyme was found to be functional towards a variety of steroid substrates, including the steroid antibiotic fusidic acid. The enzyme also catalyses the carbonyl reduction of non-steroidal aldehydes and ketones such as a novel insecticide. It is suggested that 3alpha-HSD/CR contributes to important defense strategies of C. testosteroni against natural and synthetic toxicants. The 3alpha-HSD/CR gene (hsdA) is 774 base pairs long and the deduced amino acid sequence comprises 258 residues with a calculated molecular mass of 26.4 kDa. A homology search revealed 3alpha-HSD/CR as a new member of the short-chain dehydrogenase/reductase (SDR) superfamily. Upon gel permeation chromatography the purified enzyme elutes as a 49.4 kDa protein indicating a dimeric nature of 3alpha-HSD/CR. The protein was crystallised and the structure solved by X-ray analysis. The crystal structure reveals one homodimer per asymmetric unit, thereby verifying its dimeric nature. Dimerisation takes place via an interface essentially built-up by helix alphaG and strand betaG of each subunit. So far, this type of intermolecular contact has exclusively been observed in homotetrameric SDRs, but never in the structure of a homodimeric SDR. The formation of a tetramer is blocked in 3alpha-HSD/CR by the presence of a predominantly alpha-helical subdomain, which is missing in all other SDRs of known structure. The promoter domain was localised within the 93 bp region upstream of hsdA and the transcriptional start site was identified at 28 bp upstream of the translation start site. Interestingly, hsdA expression was found to be under negative control by two repressor proteins, the genes of which were found in opposite direction downstream or overlapping with hsdA. Based on our results, we propose that induction of hsdA expression in C. testosteroni by steroids actually appears to be a de-repression by preventing the binding of repressor proteins to regulatory regions.