Intrinsic Regression Models for Medial Representation of Subcortical Structures

The aim of this article is to develop a semiparametric model to describe the variability of the medial representation of subcortical structures, which belongs to a Riemannian manifold, and establish its association with covariates of interest, such as diagnostic status, age, and gender. We develop a two-stage estimation procedure to calculate the parameter estimates. The first stage is to calculate an intrinsic least squares estimator of the parameter vector using the annealing evolutionary stochastic approximation Monte Carlo algorithm, and then the second stage is to construct a set of estimating equations to obtain a more efficient estimate with the intrinsic least squares estimate as the starting point. We use Wald statistics to test linear hypotheses of unknown parameters and establish their limiting distributions. Simulation studies are used to evaluate the accuracy of our parameter estimates and the finite sample performance of the Wald statistics. We apply our methods to the detection of the difference in the morphological changes of the left and right hippocampi between schizophrenia patients and healthy controls using a medial shape description. This article has online supplementary material.

[1]  Jean-Paul Chilès,et al.  Wiley Series in Probability and Statistics , 2012 .

[2]  Faming Liang,et al.  Annealing evolutionary stochastic approximation Monte Carlo for global optimization , 2011, Stat. Comput..

[3]  S. R. Jammalamadaka,et al.  Directional Statistics, I , 2011 .

[4]  Martin Styner,et al.  FRATS: Functional Regression Analysis of DTI Tract Statistics , 2010, IEEE Transactions on Medical Imaging.

[5]  Ofer Pasternak,et al.  The effect of metric selection on the analysis of diffusion tensor MRI data , 2010, NeuroImage.

[6]  Dinggang Shen,et al.  White matter abnormalities revealed by diffusion tensor imaging in non-demented and demented HIV+ patients , 2009, NeuroImage.

[7]  I. Dryden,et al.  Non-Euclidean statistics for covariance matrices, with applications to diffusion tensor imaging , 2009, 0910.1656.

[8]  Hongtu Zhu,et al.  Intrinsic Regression Models for Positive-Definite Matrices With Applications to Diffusion Tensor Imaging , 2009, Journal of the American Statistical Association.

[9]  Simone Vantini,et al.  Efficient estimation of three‐dimensional curves and their derivatives by free‐knot regression splines, applied to the analysis of inner carotid artery centrelines , 2009 .

[10]  R. Tibshirani,et al.  A penalized matrix decomposition, with applications to sparse principal components and canonical correlation analysis. , 2009, Biostatistics.

[11]  J. Stoyanov Saddlepoint Approximations with Applications , 2008 .

[12]  Peter T. Kim,et al.  DECONVOLUTION DENSITY ESTIMATION ON SPACES OF POSITIVE DEFINITE SYMMETRIC MATRICES By , 2008 .

[13]  P. Thomas Fletcher,et al.  Population Shape Regression from Random Design Data , 2007, 2007 IEEE 11th International Conference on Computer Vision.

[14]  Baba C. Vemuri,et al.  Tensor Splines for Interpolation and Approximation of DT-MRI With Applications to Segmentation of Isolated Rat Hippocampi , 2007, IEEE Transactions on Medical Imaging.

[15]  R. Butler SADDLEPOINT APPROXIMATIONS WITH APPLICATIONS. , 2007 .

[16]  I. Dryden,et al.  Shape-space smoothing splines for planar landmark data , 2007 .

[17]  Michael I. Miller,et al.  Pattern Theory: From Representation to Inference , 2007 .

[18]  P. Thomas Fletcher,et al.  Riemannian geometry for the statistical analysis of diffusion tensor data , 2007, Signal Process..

[19]  Nicholas Ayache,et al.  Geometric Means in a Novel Vector Space Structure on Symmetric Positive-Definite Matrices , 2007, SIAM J. Matrix Anal. Appl..

[20]  P. Kim,et al.  Multivariate Bayesian function estimation , 2005, math/0603136.

[21]  Douglas W. Jones,et al.  Morphometric analysis of lateral ventricles in schizophrenia and healthy controls regarding genetic and disease-specific factors. , 2005, Proceedings of the National Academy of Sciences of the United States of America.

[22]  A. Fingelkurts,et al.  Functional connectivity in the brain—is it an elusive concept? , 2005, Neuroscience & Biobehavioral Reviews.

[23]  Maher Moakher,et al.  A rigorous framework for diffusion tensor calculus , 2005, Magnetic resonance in medicine.

[24]  Xavier Pennec,et al.  A Riemannian Framework for Tensor Computing , 2005, International Journal of Computer Vision.

[25]  P. Thomas Fletcher,et al.  Principal geodesic analysis for the study of nonlinear statistics of shape , 2004, IEEE Transactions on Medical Imaging.

[26]  Paul M. Thompson,et al.  Regional specificity of hippocampal volume reductions in first-episode schizophrenia , 2004, NeuroImage.

[27]  Olivier Ledoit,et al.  A well-conditioned estimator for large-dimensional covariance matrices , 2004 .

[28]  Paul A. Yushkevich,et al.  Deformable M-Reps for 3D Medical Image Segmentation , 2003, International Journal of Computer Vision.

[29]  C. Anderson‐Cook,et al.  An Introduction to Multivariate Statistical Analysis (3rd ed.) (Book) , 2004 .

[30]  Anja Vogler,et al.  An Introduction to Multivariate Statistical Analysis , 2004 .

[31]  Martin Styner,et al.  Boundary and Medial Shape Analysis of the Hippocampus in Schizophrenia , 2003, MICCAI.

[32]  Xiaohong Chen,et al.  Efficient Estimation of Models with Conditional Moment Restrictions Containing Unknown Functions , 2003 .

[33]  R. Bhattacharya,et al.  LARGE SAMPLE THEORY OF INTRINSIC AND EXTRINSIC SAMPLE MEANS ON MANIFOLDS—II , 2003, math/0507423.

[34]  H. Le,et al.  Locating Fréchet means with application to shape spaces , 2001, Advances in Applied Probability.

[35]  A. Uluğ,et al.  Diffusion tensor imaging of patients with HIV and normal-appearing white matter on MR images of the brain. , 2001, AJNR. American journal of neuroradiology.

[36]  M. Pourahmadi Maximum likelihood estimation of generalised linear models for multivariate normal covariance matrix , 2000 .

[37]  Donald W. K. Andrews,et al.  Consistent Moment Selection Procedures for Generalized Method of Moments Estimation , 1999 .

[38]  K. Mardia,et al.  Statistical Shape Analysis , 1998 .

[39]  Ramon C. Littell,et al.  Projected multivariate linear models for directional data , 1998 .

[40]  Anthony C. Davison,et al.  Bootstrap Methods and Their Application , 1998 .

[41]  Jon A. Wellner,et al.  Weak Convergence and Empirical Processes: With Applications to Statistics , 1996 .

[42]  M. C. Jones,et al.  A Brief Survey of Bandwidth Selection for Density Estimation , 1996 .

[43]  Dennis M. Healy,et al.  An empirical Bayes approach to directional data and efficient computation on the sphere , 1996 .

[44]  Irène Gijbels,et al.  A study of variable bandwidth selection for local polynomial regression , 1996 .

[45]  Thomas S. Ferguson,et al.  Large Sample Theory , 1995 .

[46]  Matthew P. Wand,et al.  Kernel Smoothing , 1995 .

[47]  Y. Benjamini,et al.  Controlling the false discovery rate: a practical and powerful approach to multiple testing , 1995 .

[48]  P. Basser,et al.  MR diffusion tensor spectroscopy and imaging. , 1994, Biophysical journal.

[49]  Donald W. K. Andrews,et al.  Empirical Process Methods in Econometrics , 1993 .

[50]  W. Newey,et al.  16 Efficient estimation of models with conditional moment restrictions , 1993 .

[51]  Alan J. Lee,et al.  Regression Models for an Angular Response , 1992 .

[52]  D. Andrews Generic Uniform Convergence , 1992, Econometric Theory.

[53]  J. Marron,et al.  Smoothed cross-validation , 1992 .

[54]  James Stephen Marron,et al.  Regression smoothing parameters that are not far from their optimum , 1992 .

[55]  Torsten Bohlin,et al.  Large-sample theory , 1991 .

[56]  Peter E. Jupp,et al.  A Unified View of the Theory of Directional Statistics, 1975-1988 , 1989 .

[57]  James Stephen Marron,et al.  Comparison of data-driven bandwith selectors , 1988 .

[58]  M. J. Prentice Fitting Smooth Paths to Rotation Data , 1987 .

[59]  G. Chamberlain Asymptotic efficiency in estimation with conditional moment restrictions , 1987 .

[60]  P. Jupp,et al.  Fitting Smooth Paths to Spherical Data , 1987 .

[61]  A. Terras Harmonic Analysis on Symmetric Spaces and Applications I , 1985 .

[62]  J. Rice Bandwidth Choice for Nonparametric Regression , 1984 .

[63]  R. Varga,et al.  Proof of Theorem 2 , 1983 .

[64]  Richard A. Johnson,et al.  Some Angular-Linear Distributions and Related Regression Models , 1978 .

[65]  K. Mardia Statistics of Directional Data , 1972 .

[66]  Gould Al A Regression Technique for Angular Variates , 1969 .

[67]  R. Jennrich Asymptotic Properties of Non-Linear Least Squares Estimators , 1969 .

[68]  A. Gould A regression technique for angular variates. , 1969, Biometrics.

[69]  T. W. Anderson,et al.  An Introduction to Multivariate Statistical Analysis , 1959 .