A stabilised nodal spectral element method for fully nonlinear water waves

We present a new stabilised and efficient high-order nodal spectral element method based on the Mixed Eulerian Lagrangian (MEL) method for general-purpose simulation of fully nonlinear water waves and wave-body interactions. In this MEL formulation a standard Laplace formulation is used to handle arbitrary body shapes using unstructured - possibly hybrid - meshes consisting of high-order curvilinear iso-parametric quadrilateral/triangular elements to represent the body surfaces and for the evolving free surface. Importantly, our numerical analysis highlights that a single top layer of quadrilaterals elements resolves temporal instabilities in the numerical MEL scheme that are known to be associated with mesh topology containing asymmetric element orderings. The 'surface variable only' free surface formulation based on introducing a particle-following (Lagrangian) reference frame contains quartic nonlinear terms that require proper treatment by numerical discretisation due to the possibility of strong aliasing effects. We demonstrate how to stabilise this nonlinear MEL scheme using an efficient combination of (i) global L2 projection without quadrature errors, (ii) mild nonlinear spectral filtering and (iii) re-meshing techniques. Numerical experiments revisiting known benchmarks are presented, and highlights that modelling using a high-order spectral element method provides excellent accuracy in prediction of nonlinear and dispersive wave propagation, and of nonlinear wave-induced loads on fixed submerged and surface-piercing bodies.

[1]  G. Wu,et al.  Finite element simulation of fully non‐linear interaction between vertical cylinders and steep waves. Part 1: methodology and numerical procedure , 2001 .

[2]  Timothy C. Warburton,et al.  Basis Functions for Triangular and Quadrilateral High-Order Elements , 1999, SIAM J. Sci. Comput..

[3]  Claes Eskilsson,et al.  Unstructured Spectral Element Model for Dispersive and Nonlinear Wave Propagation , 2016 .

[4]  Hongbo Xü,et al.  Computations of fully nonlinear three-dimensional wave–wave and wave–body interactions. Part 1. Dynamics of steep three-dimensional waves , 2001, Journal of Fluid Mechanics.

[5]  Maurizio Brocchini,et al.  A reasoned overview on Boussinesq-type models: the interplay between physics, mathematics and numerics , 2013, Proceedings of the Royal Society A: Mathematical, Physical and Engineering Sciences.

[6]  Jens Peter Kofoed,et al.  CFD study of the overtopping discharge of the Wave Dragon wave energy converter , 2015 .

[7]  Pei Wang,et al.  An efficient numerical tank for non-linear water waves, based on the multi-subdomain approach with BEM , 1995 .

[8]  T. A. Zang,et al.  Spectral Methods: Fundamentals in Single Domains , 2010 .

[9]  Alistair G.L. Borthwick,et al.  A PSEUDOSPECTRAL σ -TRANSFORMATION MODEL OF 2-D NONLINEAR WAVES , 1999 .

[10]  Qingwei Ma,et al.  Advances in Numerical Simulation of Nonlinear Water Waves , 2010 .

[11]  David A. Kopriva,et al.  Implementing Spectral Methods for Partial Differential Equations: Algorithms for Scientists and Engineers , 2009 .

[12]  Harry B. Bingham,et al.  An efficient flexible-order model for 3D nonlinear water waves , 2009, J. Comput. Phys..

[13]  Qingwei Ma,et al.  Finite element simulations of fully non-linear interaction between vertical cylinders and steep waves. Part 2: Numerical results and validation , 2001 .

[14]  Robert Strzodka,et al.  Using GPUs to improve multigrid solver performance on a cluster , 2008, Int. J. Comput. Sci. Eng..

[15]  Harry B. Bingham,et al.  A new Boussinesq method for fully nonlinear waves from shallow to deep water , 2002, Journal of Fluid Mechanics.

[16]  R. C. Ertekin,et al.  Diffraction of solitary waves by submerged horizontal cylinders , 1992 .

[17]  Yanhua Wu,et al.  Study on Interaction between a Solitary Wave and a Submerged Semi-Circular Cylinder Using Acceleration Potential , 2013 .

[18]  Spencer J. Sherwin,et al.  Dealiasing techniques for high-order spectral element methods on regular and irregular grids , 2015, J. Comput. Phys..

[19]  L. E. Coates,et al.  Solitary wave forces on horizontal cylinders , 1982 .

[20]  Allan Peter Engsig-Karup,et al.  Designing Scientific Software for Heterogeneous Computing:With application to large-scale water wave simulations , 2013 .

[21]  Hongmei Yan,et al.  An efficient high-order boundary element method for nonlinear wave-wave and wave-body interactions , 2011, J. Comput. Phys..

[22]  Valentin Heller,et al.  Assessment of an Advanced Finite Element Tool For the Simulation of Fully-nonlinear Gravity Water Waves , 2012 .

[23]  Pierre Ferrant,et al.  Propagation of 3D nonlinear waves over an elliptical mound with a High-Order Spectral method , 2017 .

[24]  R. Eatock Taylor,et al.  Numerical wave tank based on a σ‐transformed finite element inviscid flow solver , 2003 .

[25]  Roland Bouffanais,et al.  Mesh Update Techniques for Free-Surface Flow Solvers Using Spectral Element Method , 2006, J. Sci. Comput..

[26]  Peter A. Troch,et al.  Development of a numerical modelling tool for combined near field and far field wave transformations using a coupling of potential flow solvers , 2016 .

[27]  Pengzhi Lin,et al.  A multiple-layer σ-coordinate model for simulation of wave–structure interaction , 2006 .

[28]  Ronald W. Yeung,et al.  Numerical Methods in Free-Surface Flows , 1982 .

[29]  Alain H. Clément,et al.  Recent Research And Development of Numerical Wave Tank - A Review , 1999 .

[30]  Per A. Madsen,et al.  A REVIEW OF BOUSSINESQ-TYPE EQUATIONS FOR SURFACE GRAVITY WAVES , 1999 .

[31]  A. Andonowati,et al.  Applying the finite element method in numerically solving the two dimensional free-surface water wave equations , 1998 .

[32]  Harry B. Bingham,et al.  On the accuracy of finite-difference solutions for nonlinear water waves , 2007 .

[33]  Vallam Sundar,et al.  VELOCITY CALCULATION METHODS IN FINITE ELEMENT BASED MEL FORMULATION , 2010 .

[34]  A Clement,et al.  HYDRODYNAMIC FORCES INDUCED BY A SOLITARY WAVE ON A SUBMERGED CIRCULAR CYLINDER , 1995 .

[35]  A. Patera A spectral element method for fluid dynamics: Laminar flow in a channel expansion , 1984 .

[36]  Bo Terp Paulsen,et al.  An efficient domain decomposition strategy for wave loads on surface piercing circular cylinders , 2014 .

[37]  Spencer J. Sherwin,et al.  Regular Article: Free-Surface Flow Simulation Using hp/Spectral Elements , 1999 .

[38]  Q. W. Ma,et al.  Quasi ALE finite element method for nonlinear water waves , 2006, J. Comput. Phys..

[39]  C. A. Fleming,et al.  A three dimensional multigrid model for fully nonlinear water waves , 1997 .

[40]  Jurjen A. Battjes,et al.  Numerical simulation of nonlinear wave propagation over a bar , 1994 .

[41]  D. Yue,et al.  COMPUTATION OF NONLINEAR FREE-SURFACE FLOWS , 1996 .

[42]  Odd M. Faltinsen,et al.  A harmonic polynomial cell (HPC) method for 3D Laplace equation with application in marine hydrodynamics , 2014, J. Comput. Phys..

[43]  Tim Warburton,et al.  An explicit construction of interpolation nodes on the simplex , 2007 .

[44]  Xing Cai,et al.  A Finite Element Method for Fully Nonlinear Water Waves , 1998 .

[45]  P. Fischer,et al.  High-Order Methods for Incompressible Fluid Flow , 2002 .

[46]  Hajime Mase,et al.  Hybrid frequency-domain KdV equa-tion for random wave transformation , 1992 .

[47]  Spencer J. Sherwin,et al.  The next step in coastal numerical models: spectral/hp element methods? , 2005 .

[48]  J. H. Westhuis The numerical simulation of nonlinear waves in a hydrodynamic model test basin , 2001 .

[49]  G. Karniadakis,et al.  Spectral/hp Element Methods for Computational Fluid Dynamics , 2005 .

[50]  O. C. Zienkiewicz,et al.  Chapter 6 – Free Surface and Buoyancy Driven Flows , 2014 .

[51]  George Em Karniadakis,et al.  De-aliasing on non-uniform grids: algorithms and applications , 2003 .

[52]  Allan Peter Engsig-Karup,et al.  Fast hydrodynamics on heterogenous many-core hardware , 2013 .

[53]  Bruce J. West,et al.  A new numerical method for surface hydrodynamics , 1987 .

[54]  Michael Selwyn Longuet-Higgins,et al.  The deformation of steep surface waves on water - I. A numerical method of computation , 1976, Proceedings of the Royal Society of London. A. Mathematical and Physical Sciences.

[55]  Stephan T. Grilli,et al.  A high-order adaptive time-stepping TVD solver for Boussinesq modeling of breaking waves and coastal inundation , 2012 .

[56]  R. Cointe,et al.  NONLINEAR SIMULATION OF TRANSIENT FREE SURFACE FLOWS , 1989 .

[57]  Qiang Zhu,et al.  Three-dimensional instability of standing waves , 2003, Journal of Fluid Mechanics.

[58]  Vladimir E. Zakharov,et al.  Stability of periodic waves of finite amplitude on the surface of a deep fluid , 1968 .

[59]  Mark J. Cooker,et al.  Reflection of a high-amplitude solitary wave at a vertical wall , 1997, Journal of Fluid Mechanics.

[60]  David A. Ham,et al.  Finite element assembly strategies on multi‐core and many‐core architectures , 2013 .

[61]  Jacob K. White,et al.  Fast Hydrodynamic Analysis of Large Offshore Structures , 1999 .

[62]  O. Zienkiewicz The Finite Element Method In Engineering Science , 1971 .

[63]  R. Eatock Taylor,et al.  Finite element analysis of two-dimensional non-linear transient water waves , 1994 .

[64]  P. Ferrant,et al.  Rogue Waves in Large Scale Fully Nonlinear High-order-Spectral Simulations , 2008 .

[65]  Robert Michael Kirby,et al.  Filtering in Legendre spectral methods , 2008, Math. Comput..

[66]  Stephan T. Grilli,et al.  Fast Integral Equation Methods for Fully Nonlinear Water Wave Modeling , 2014 .

[67]  J. C. HARRIS,et al.  A COMPARISON OF METHODS IN FULLY NONLINEAR BOUNDARY ELEMENT NUMERICAL WAVE TANK DEVELOPMENT , 2014 .

[68]  J. Hesthaven,et al.  Nodal Discontinuous Galerkin Methods: Algorithms, Analysis, and Applications , 2007 .

[69]  Jan S. Hesthaven,et al.  DG-FEM solution for nonlinear wave-structure interaction using Boussinesq-type equations , 2008 .

[70]  R. Eatock Taylor,et al.  The coupled finite element and boundary element analysis of nonlinear interactions between waves and bodies , 2003 .

[71]  James T. Kirby,et al.  Wave evolution over submerged sills: tests of a high-order Boussinesq model , 1999 .

[72]  Jan S. Hesthaven,et al.  Spectral Methods for Time-Dependent Problems: Contents , 2007 .

[73]  J. Larsen,et al.  Open boundaries in short wave simulations — A new approach , 1983 .

[74]  Leslie Greengard,et al.  A fast algorithm for particle simulations , 1987 .

[75]  Ian Eames,et al.  Momentum and energy of a solitary wave interacting with a submerged semi-circular cylinder , 2012, Journal of Fluid Mechanics.

[76]  G. Karniadakis,et al.  Spectral/hp Element Methods for CFD , 1999 .

[77]  Günther Clauss,et al.  Numerical simulation of nonlinear transient waves and its validation by laboratory data , 1999 .

[78]  Allan Peter Engsig-Karup,et al.  Analysis of efficient preconditioned defect correction methods for nonlinear water waves , 2014 .

[79]  David Le Touzé,et al.  Non‐linear time‐domain models for irregular wave diffraction about offshore structures , 2003 .

[80]  John S. Campbell,et al.  Local and global smoothing of discontinuous finite element functions using a least squares method , 1974 .

[81]  M. S. Celebi,et al.  Fully Nonlinear 3-D Numerical Wave Tank Simulation , 1998 .

[82]  Harry B. Bingham,et al.  High-order finite difference solution for 3D nonlinear wave-structure interaction , 2010 .

[83]  J. Hesthaven,et al.  Nodal DG-FEM solution of high-order Boussinesq-type equations , 2007 .

[84]  O. C. Zienkiewicz,et al.  Free Surface and Buoyancy Driven Flows , 2005 .

[85]  Per A. Madsen,et al.  A review of Boussinesq-type equations for gravity waves , 1999 .

[86]  Denys Dutykh,et al.  Efficient computation of steady solitary gravity waves , 2013, 1302.1812.

[87]  Bin Teng,et al.  Fully nonlinear wave interaction with freely floating non-wall-sided structures , 2015 .

[88]  Erwin Laure,et al.  OpenACC acceleration of the Nek5000 spectral element code , 2015, Int. J. High Perform. Comput. Appl..

[89]  H. Kreiss,et al.  Comparison of accurate methods for the integration of hyperbolic equations , 1972 .

[90]  Timothy C. Warburton,et al.  Taming the CFL Number for Discontinuous Galerkin Methods on Structured Meshes , 2008, SIAM J. Numer. Anal..

[91]  Luigi Cavaleri,et al.  Wave Modelling - The State of the Art , 2007 .

[92]  Claes Eskilsson,et al.  On devising Boussinesq-type models with bounded eigenspectra: One horizontal dimension , 2014, J. Comput. Phys..

[93]  Chizhong Wang,et al.  A brief summary of finite element method applications to nonlinear wave-structure interactions , 2011 .

[94]  Allan Peter Engsig-Karup,et al.  A massively parallel GPU‐accelerated model for analysis of fully nonlinear free surface waves , 2012 .

[95]  G. Wei,et al.  Time-Dependent Numerical Code for Extended Boussinesq Equations , 1995 .

[96]  Deborah Greaves,et al.  A moving boundary finite element method for fully nonlinear wave simulations , 1997 .

[97]  R. Dean Stream function representation of nonlinear ocean waves , 1965 .

[98]  Qingwei Ma,et al.  QALE‐FEM for numerical modelling of non‐linear interaction between 3D moored floating bodies and steep waves , 2009 .

[99]  Joel Ferziger,et al.  Higher Order Methods for Incompressible Fluid Flow: by Deville, Fischer and Mund, Cambridge University Press, 499 pp. , 2003 .

[100]  Solomon C. Yim,et al.  An Efficient Three-Dimensional FNPF Numerical Wave Tank for Large-Scale Wave Basin Experiment Simulation , 2013 .

[101]  Arthur M. Reed,et al.  Modern computational methods for ships in a seaway. Discussion. Author's closure , 2001 .

[102]  G. X. Wu,et al.  Time stepping solutions of the two-dimensional nonlinear wave radiation problem , 1995 .

[103]  Frédéric Dias,et al.  The numerical computation of freely propagating time-dependent irrotational water waves , 2006 .

[104]  M. F. Webster,et al.  A comparison of gradient recovery methods in finite‐element calculations , 1991 .

[105]  K. Tanizawa A Nonlinear Simulation Method of 3-D Body Motions in Waves (1st Report) , 1995 .

[106]  W. J. Gordon,et al.  Construction of curvilinear co-ordinate systems and applications to mesh generation , 1973 .

[107]  Einar M. Rønquist,et al.  Accurate interface-tracking for arbitrary Lagrangian-Eulerian schemes , 2009, J. Comput. Phys..

[108]  Dick K. P. Yue,et al.  A high-order spectral method for the study of nonlinear gravity waves , 1987, Journal of Fluid Mechanics.