Concept Selection in n-dimension Using s-Pareto Frontiers and Visualization

[1]  A. Belegundu,et al.  Optimization Concepts and Applications in Engineering , 2011 .

[2]  Jae-Moon Lee,et al.  A NEW APPROACH TO INTEGRATED WING DESIGN IN CONCEPTUAL SYNTHESIS AND OPTIMIZATION , 1996 .

[3]  Achille Messac,et al.  Effective Generation of the Pareto Frontier: The Normalized Normal Constraint Method , 2002 .

[4]  A. Messac,et al.  Required Relationship Between Objective Function and Pareto Frontier Orders: Practical Implications , 2001 .

[5]  George A. Hazelrigg,et al.  On the role and use of mathematical models in engineering design , 1999 .

[6]  David E. Goldberg,et al.  Genetic Algorithms in Search Optimization and Machine Learning , 1988 .

[7]  R. S. Laundy,et al.  Multiple Criteria Optimisation: Theory, Computation and Application , 1989 .

[8]  Kosuke Ishii,et al.  Life-Cycle Engineering Design , 1995 .

[9]  Lothar Thiele,et al.  Multiobjective Optimization Using Evolutionary Algorithms - A Comparative Case Study , 1998, PPSN.

[10]  Juite Wang,et al.  Ranking engineering design concepts using a fuzzy outranking preference model , 2001, Fuzzy Sets Syst..

[11]  Xuan Chen,et al.  VISUALIZING THE OPTIMIZATION PROCESS IN REAL-TIME USING PHYSICAL PROGRAMMING , 1998 .

[12]  William A. Crossley,et al.  Conceptual design of helicopters via genetic algorithm , 1996 .

[13]  John R. Olds,et al.  Multidisciplinary Conceptual Design Optimization of Space Transportation Systems , 1999 .

[14]  A. Messac,et al.  DEVELOPMENT OF A PARETO-BASED CONCEPT SELECTION METHOD , 2002 .

[15]  Georges M. Fadel,et al.  Approximating Pareto curves using the hyper-ellipse , 1998 .

[16]  J. Dennis,et al.  NORMAL-BOUNDARY INTERSECTION: AN ALTERNATE METHOD FOR GENERATING PARETO OPTIMAL POINTS IN MULTICRITERIA OPTIMIZATION PROBLEMS , 1996 .

[17]  Shapour Azarm,et al.  Metrics for Quality Assessment of a Multiobjective Design Optimization Solution Set , 2001 .

[18]  A. Ismail-Yahaya,et al.  Effective generation of the Pareto frontier using the Normal Constraint method , 2002 .

[19]  John H. Holland,et al.  Adaptation in Natural and Artificial Systems: An Introductory Analysis with Applications to Biology, Control, and Artificial Intelligence , 1992 .

[20]  Georges M. Fadel,et al.  Epsilon-Optimality in Bi-Criteria Optimization , 2002 .

[21]  John E. Dennis,et al.  Normal-Boundary Intersection: A New Method for Generating the Pareto Surface in Nonlinear Multicriteria Optimization Problems , 1998, SIAM J. Optim..

[22]  Farrokh Mistree,et al.  Metrics for Assessing Design Freedom and Information Certainty in the Early Stages of Design , 1998 .

[23]  Kaisa Miettinen,et al.  Nonlinear multiobjective optimization , 1998, International series in operations research and management science.

[24]  Bradley S. Homann,et al.  Precision machine design assistant: A constraint-based tool for the design and evaluation of precision machine tool concepts , 1998, Artificial Intelligence for Engineering Design, Analysis and Manufacturing.