Near-to-eye electroholography via guided-wave acousto-optics for augmented reality

Near-to-eye holographic displays act to directly project wavefronts into a viewer’s eye in order to recreate 3-D scenes for augmented or virtual reality applications. Recently, several solutions for near-to-eye electroholography have been proposed based on digital spatial light modulators in conjunction with supporting optics, such as holographic waveguides for light delivery; however, such schemes are limited by the inherent low space-bandwidth product available with current digital SLMs. In this paper, we depict a fully monolithic, integrated optical platform for transparent near-to-eye holographic display requiring no supporting optics. Our solution employs a guided-wave acousto-optic spatial light modulator implemented in lithium niobate in conjunction with an integrated Bragg-regime reflection volume hologram.

[1]  MULTIMODE WAVEGUIDE HOLOGRAMS CAPABLE OF USNGNON-COHERENT LGHT , 2017 .

[2]  Gang Li,et al.  Fourier holographic display for augmented reality using holographic optical element , 2016, SPIE OPTO.

[3]  Young-Min Kim,et al.  Gaze contingent hologram synthesis for holographic head-mounted display , 2016, SPIE OPTO.

[4]  Sundeep Jolly,et al.  Fabrication of waveguide spatial light modulators via femtosecond laser micromachining , 2016, SPIE OPTO.

[5]  Sundeep Jolly,et al.  Progress in off-plane computer-generated waveguide holography for near-to-eye 3D display , 2016, SPIE OPTO.

[6]  Jae-Hyeung Park,et al.  3D holographic head mounted display using holographic optical elements with astigmatism aberration compensation. , 2015, Optics express.

[7]  W. Akemann,et al.  Fast spatial beam shaping by acousto-optic diffraction for 3D non-linear microscopy. , 2015, Optics express.

[8]  Yongtian Wang,et al.  Portable waveguide display system with a large field of view by integrating freeform elements and volume holograms. , 2015, Optics express.

[9]  David J. Webb,et al.  Microstructured waveguides in z-cut LiNbO 3 by high-repetition rate direct femtosecond laser inscription , 2014 .

[10]  Joonku Hahn,et al.  Holographic head-mounted display with RGB light emitting diode light source. , 2014, Optics express.

[11]  Feng Chen,et al.  Femtosecond laser micromachining of lithium niobate depressed cladding waveguides , 2013 .

[12]  V. Bove,et al.  Anisotropic leaky-mode modulator for holographic video displays , 2013, Nature.

[13]  Daniel E. Smalley Holovideo on a stick : integrated optics for holographic video displays , 2013 .

[14]  S. Juodkazis,et al.  Direct laser writing: versatile tool for microfabrication of lithium niobate , 2012 .

[15]  Vadim Smirnov,et al.  Modeling of phase volume diffractive gratings, part 2: reflecting sinusoidal uniform gratings, Bragg mirrors , 2012 .

[16]  Oliver Bimber,et al.  Displays: Fundamentals and Applications , 2011 .

[17]  Mangirdas Malinauskas,et al.  Diffraction grating fabrication in lithium niobate and KDP crystals with femtosecond laser pulses , 2011 .

[18]  Jae-Hyeung Park,et al.  Three-dimensional holographic display using active shutter for head mounted display application , 2011, Electronic Imaging.

[19]  Andreas Tünnermann,et al.  Laser direct writing: Enabling monolithic and hybrid integrated solutions on the lithium niobate platform , 2011 .

[20]  Eric Mazur,et al.  Femtosecond laser micromachining in transparent materials , 2008 .

[21]  Andreas Tünnermann,et al.  Origins of waveguiding in femtosecond laser-structured LiNbO3 , 2007 .

[22]  Andreas Tünnermann,et al.  Structural properties of femtosecond laser-induced modifications in LiNbO3 , 2006 .

[23]  D. Ballarini,et al.  Femtosecond Laser Writing of Surface Microstructures in Lithium Niobate , 2005 .

[24]  Igor V. Ciapurin,et al.  Modeling of Gaussian beam diffraction on volume Bragg gratings in PTR glass , 2005, SPIE OPTO.

[25]  Brian T. Schowengerdt,et al.  Stereoscopic retinal scanning laser display with integrated focus cues for ocular accommodation , 2004, IS&T/SPIE Electronic Imaging.

[26]  D. Kip,et al.  TOPICAL REVIEW: Fabrication and application of holographic Bragg gratings in lithium niobate channel waveguides , 2003 .

[27]  George Barbastathis,et al.  Volume Holographic Multiplexing Methods , 2000 .

[28]  C.S. Tsai,et al.  Collinear guided wave to leaky wave acoustooptic interactions in proton-exchanged LiNbO/sub 3/ waveguides , 2000, IEEE Transactions on Ultrasonics, Ferroelectrics and Frequency Control.

[29]  A. Larsson,et al.  Waveguide hologram for outcoupling and simultaneous focusing into multiple arbitrary positions , 1998, IEEE Photonics Technology Letters.

[30]  R. C. Petersen American national standard for the safe use of optical fiber communications systems utilizing laser diodes and LED sources, ANSI Z136.1-1997 , 1997 .

[31]  Pierre St-Hilaire Scalable optical architecture for electronic holography , 1995 .

[32]  Pierre St. Hilaire Scalable Optical Architectures for Electronic Holography. , 1994 .

[33]  Douglas E. Holmgren,et al.  Scanned Laser Displays for Virtual Reality:A Feasibility Study , 1993, Presence: Teleoperators & Virtual Environments.

[34]  S. Benton,et al.  Synthetic aperture holography: a novel approach to three-dimensional displays , 1992 .

[35]  Chen S. Tsai,et al.  Guided-Wave Acousto-Optics , 1990 .

[36]  Chen S. Tsai,et al.  Guided-wave acousto-optics : interactions, devices, and applications , 1990 .

[37]  H. Kogelnik Coupled wave theory for thick hologram gratings , 1969 .