A Contribution to Improve the Accuracy of Chatter Prediction in Machine Tools Using the Stability Lobe Diagram

The chatter phenomenon can severely limit the power available for milling. The stability lobe diagram (SLD) is a very fast and simple method to predict the chatter free zone, allowing the selection of the most adequate spindle speed and depth of cut for higher productivity. However, the data used to calculate the SLD, coming from frequency response functions (FRFs), must be acquired adequately to improve the predictability. FRFs result differently depending on the activation of the spindle electronic control. The present work uses SLDs to investigate these differences and experimental end milling tests to assess the accuracy of SLDs curves. Results indicate that the inclusion of spindle electronic control provides better accuracy in predicting the chatter in milling.

[1]  Elso Kuljanić,et al.  Multisensor approaches for chatter detection in milling , 2008 .

[2]  Yusuf Altintas,et al.  Analytical Prediction of Stability Lobes in Milling , 1995 .

[3]  Simon S. Park,et al.  Robust regenerative chatter stability in machine tools , 2007 .

[4]  Yusuf Altintas,et al.  Chatter Stability Model of Micro-Milling With Process Damping , 2013 .

[5]  Mohammad R. Movahhedy,et al.  Size dependent vibrations of micro-end mill incorporating strain gradient elasticity theory , 2013 .

[6]  Neil D. Sims,et al.  Analytical prediction of chatter stability for variable pitch and variable helix milling tools , 2008 .

[7]  Yusuf Altintas,et al.  Modeling and identification of tool holder–spindle interface dynamics , 2007 .

[8]  M C Yoon,et al.  Cutting force monitoring in the endmilling operation for chatter detection , 2005 .

[9]  Vittorio Ferrari,et al.  Applied structural and mechanical vibrations - theory, methods and measuring instrumentation , 1999 .

[10]  Yusuf Altintas,et al.  Position-Dependent Multibody Dynamic Modeling of Machine Tools Based on Improved Reduced Order Models , 2013 .

[11]  C. K. Toh,et al.  Vibration analysis in high speed rough and finish milling hardened steel , 2004 .

[12]  Yusuf Altintas,et al.  Expert spindle design system , 2005 .

[13]  D. J. Ewins,et al.  Modal Testing: Theory and Practice , 1984 .

[14]  Zoltan Dombovari,et al.  The effect of serration on mechanics and stability of milling cutters , 2010 .

[15]  Nuno M. M. Maia,et al.  Theoretical and Experimental Modal Analysis , 1997 .

[16]  Joaquim Ciurana,et al.  A new experimental methodology for identification of stability lobes diagram in milling operations , 2008 .

[17]  Yusuf Altintas,et al.  Modeling of spindle-bearing and machine tool systems for virtual simulation of milling operations , 2007 .

[18]  Matti Rantatalo,et al.  Milling machine spindle analysis using FEM and non-contact spindle excitation and response measurement , 2007 .

[19]  Pascal Ray,et al.  Model-based chatter stability prediction for high-speed spindles , 2007 .

[20]  S. A. Tobias Machine-tool vibration , 1965 .

[21]  Yusuf Altintas,et al.  Optimization of multiple tuned mass dampers to suppress machine tool chatter , 2010 .

[22]  Dai Gil Lee,et al.  Design and manufacture of hybrid polymer concrete bed for high-speed CNC milling machine , 2008 .

[23]  Neil D. Sims,et al.  Vibration absorbers for chatter suppression: A new analytical tuning methodology , 2007 .

[24]  A. Galip Ulsoy,et al.  Nonlinear Feed Effect in Machining Chatter Analysis , 2008 .

[25]  Keith A. Young,et al.  Piezoelectric sensors and actuators for milling tool stability lobes , 2005 .

[26]  Guillem Quintana,et al.  Chatter in machining processes: A review , 2011 .

[27]  Paulo Sergio Varoto,et al.  Vibration Testing: Theory and Practice , 1995 .

[28]  J. Tlusty,et al.  Active Damping of Structural Modes in High-Speed Machine Tools , 1997 .