High order ADER schemes for a unified first order hyperbolic formulation of Newtonian continuum mechanics coupled with electro-dynamics

Abstract In this paper, we propose a new unified first order hyperbolic model of Newtonian continuum mechanics coupled with electro-dynamics. The model is able to describe the behavior of moving elasto-plastic dielectric solids as well as viscous and inviscid fluids in the presence of electro-magnetic fields. It is actually a very peculiar feature of the proposed PDE system that viscous fluids are treated just as a special case of elasto-plastic solids. This is achieved by introducing a strain relaxation mechanism in the evolution equations of the distortion matrix A , which in the case of purely elastic solids maps the current configuration to the reference configuration. The model also contains a hyperbolic formulation of heat conduction as well as a dissipative source term in the evolution equations for the electric field given by Ohm's law. Via formal asymptotic analysis we show that in the stiff limit, the governing first order hyperbolic PDE system with relaxation source terms tends asymptotically to the well-known viscous and resistive magnetohydrodynamics (MHD) equations. Furthermore, a rigorous derivation of the model from variational principles is presented, together with the transformation of the Euler–Lagrange differential equations associated with the underlying variational problem from Lagrangian coordinates to Eulerian coordinates in a fixed laboratory frame. The present paper hence extends the unified first order hyperbolic model of Newtonian continuum mechanics recently proposed in [110,42] to the more general case where the continuum is coupled with electro-magnetic fields. The governing PDE system is symmetric hyperbolic and satisfies the first and second principle of thermodynamics, hence it belongs to the so-called class of symmetric hyperbolic thermodynamically compatible systems (SHTC), which have been studied for the first time by Godunov in 1961 [61] and later in a series of papers by Godunov and Romenski [67,69,119] . An important feature of the proposed model is that the propagation speeds of all physical processes, including dissipative processes, are finite . The model is discretized using high order accurate ADER discontinuous Galerkin (DG) finite element schemes with a posteriori subcell finite volume limiter and using high order ADER-WENO finite volume schemes. We show numerical test problems that explore a rather large parameter space of the model ranging from ideal MHD, viscous and resistive MHD over pure electro-dynamics to moving dielectric elastic solids in a magnetic field.

[1]  Michael Dumbser,et al.  Very high order PNPM schemes on unstructured meshes for the resistive relativistic MHD equations , 2009, J. Comput. Phys..

[2]  Nicolas Favrie,et al.  Criterion of Hyperbolicity in Hyperelasticity in the Case of the Stored Energy in Separable Form , 2014 .

[3]  Michael Dumbser,et al.  Multidimensional Riemann problem with self-similar internal structure. Part II - Application to hyperbolic conservation laws on unstructured meshes , 2015, J. Comput. Phys..

[4]  Randall J. LeVeque,et al.  A study of numerical methods for hyperbolic conservation laws with stiff source terms , 1990 .

[5]  Hiroaki Nishikawa,et al.  A first-order system approach for diffusion equation. I: Second-order residual-distribution schemes , 2007, J. Comput. Phys..

[6]  Lorenzo Pareschi,et al.  Numerical Schemes for Hyperbolic Systems of Conservation Laws with Stiff Diffusive Relaxation , 2000, SIAM J. Numer. Anal..

[7]  C. Munz,et al.  Hyperbolic divergence cleaning for the MHD equations , 2002 .

[8]  J. Marchal,et al.  Loss of evolution in the flow of viscoelastic fluids , 1986 .

[9]  Michael Dumbser,et al.  High-Order Unstructured One-Step PNPM Schemes for the Viscous and Resistive MHD Equations , 2009 .

[10]  Kurt Friedrichs,et al.  Symmetric positive linear differential equations , 1958 .

[11]  S. K. Godunov,et al.  THE PROBLEM OF A GENERALIZED SOLUTION IN THE THEORY OF QUASILINEAR EQUATIONS AND IN GAS DYNAMICS , 1962 .

[12]  Carlos Parés Madroñal,et al.  Numerical methods for nonconservative hyperbolic systems: a theoretical framework , 2006, SIAM J. Numer. Anal..

[13]  C. D. Levermore,et al.  Hyperbolic conservation laws with stiff relaxation terms and entropy , 1994 .

[14]  T. Ruggeri,et al.  Convex covariant entropy density, symmetric conservative form, and shock waves in relativistic magnetohydrodynamics , 1981 .

[15]  R. Keppens,et al.  Growth and saturation of the Kelvin–Helmholtz instability with parallel and antiparallel magnetic fields , 1999, Journal of Plasma Physics.

[16]  Hiroaki Nishikawa,et al.  A first-order system approach for diffusion equation. II: Unification of advection and diffusion , 2010, J. Comput. Phys..

[17]  Miroslav Grmela,et al.  Irreversible mechanics and thermodynamics of two-phase continua experiencing stress-induced solid–fluid transitions , 2015 .

[18]  H. Struchtrup,et al.  Regularization of Grad’s 13 moment equations: Derivation and linear analysis , 2003 .

[19]  P. Lax,et al.  Systems of conservation equations with a convex extension. , 1971, Proceedings of the National Academy of Sciences of the United States of America.

[20]  S.,et al.  Numerical Solution of Initial Boundary Value Problems Involving Maxwell’s Equations in Isotropic Media , 1966 .

[21]  Michael Dumbser,et al.  Divergence-free MHD on unstructured meshes using high order finite volume schemes based on multidimensional Riemann solvers , 2015, J. Comput. Phys..

[22]  S. K. Godunov Symmetric form of the magnetohydrodynamic equation , 1972 .

[23]  C. D. Levermore,et al.  Numerical Schemes for Hyperbolic Conservation Laws with Stiff Relaxation Terms , 1996 .

[24]  C. Cattaneo,et al.  Sulla Conduzione Del Calore , 2011 .

[25]  I︠A︡kov Ilʹich Frenkelʹ Kinetic Theory of Liquids , 1955 .

[26]  Ralf Deiterding,et al.  Eulerian adaptive finite-difference method for high-velocity impact and penetration problems , 2013, J. Comput. Phys..

[27]  Manuel Jesús Castro Díaz,et al.  Approximate Osher-Solomon schemes for hyperbolic systems , 2016, Appl. Math. Comput..

[28]  N. Bourne,et al.  Constitutive modeling of shock response of polytetrafluoroethylene , 2011 .

[29]  H. S. Green,et al.  A Kinetic Theory of Liquids , 1947, Nature.

[30]  M. Torrilhon Modeling Nonequilibrium Gas Flow Based on Moment Equations , 2016 .

[31]  Richard Saurel,et al.  Modelling wave dynamics of compressible elastic materials , 2008, J. Comput. Phys..

[32]  S. Godunov,et al.  Elements of Continuum Mechanics and Conservation Laws , 2003, Springer US.

[33]  Marco Velli,et al.  RESISTIVE MAGNETOHYDRODYNAMICS SIMULATIONS OF THE IDEAL TEARING MODE , 2015, 1504.07036.

[34]  A. Bobylev,et al.  The Chapman-Enskog and Grad methods for solving the Boltzmann equation , 1982 .

[35]  Hiroaki Nishikawa,et al.  Hyperbolic method for magnetic reconnection process in steady state magnetohydrodynamics , 2016 .

[36]  A. D. Resnyansky,et al.  The role of numerical simulation in the study of high-velocity impact , 1995 .

[37]  Yu. D. Fomin,et al.  Two liquid states of matter: a dynamic line on a phase diagram. , 2011, Physical review. E, Statistical, nonlinear, and soft matter physics.

[38]  J. W. Humberston Classical mechanics , 1980, Nature.

[39]  P. Roe,et al.  A Solution-Adaptive Upwind Scheme for Ideal Magnetohydrodynamics , 1999 .

[40]  Eleuterio F. Toro,et al.  Derivative Riemann solvers for systems of conservation laws and ADER methods , 2006, J. Comput. Phys..

[41]  Dinshaw S. Balsara A two-dimensional HLLC Riemann solver for conservation laws: Application to Euler and magnetohydrodynamic flows , 2012, J. Comput. Phys..

[42]  V. A. Ugarov,et al.  METHODOLOGICAL NOTES: Remarks on forces and the energy-momentum tensor in macroscopic electrodynamics , 1976 .

[43]  Michael Dumbser,et al.  Efficient implementation of ADER schemes for Euler and magnetohydrodynamical flows on structured meshes - Speed comparisons with Runge-Kutta methods , 2013, J. Comput. Phys..

[44]  Stéphane Clain,et al.  A high-order finite volume method for systems of conservation laws - Multi-dimensional Optimal Order Detection (MOOD) , 2011, J. Comput. Phys..

[45]  Eleuterio F. Toro,et al.  ADER schemes for three-dimensional non-linear hyperbolic systems , 2005 .

[46]  A. A. Schekochihin,et al.  Instability of current sheets and formation of plasmoid chains , 2007 .

[47]  E. Toro,et al.  Solution of the generalized Riemann problem for advection–reaction equations , 2002, Proceedings of the Royal Society of London. Series A: Mathematical, Physical and Engineering Sciences.

[48]  Dima Bolmatov,et al.  Revealing the Mechanism of the Viscous-to-Elastic Crossover in Liquids. , 2015, The journal of physical chemistry letters.

[49]  Tommaso Ruggeri,et al.  Global existence of smooth solutions and stability of the constant state for dissipative hyperbolic systems with applications to extended thermodynamics , 2005 .

[50]  J. Michael Picone,et al.  Evolution of the Orszag-Tang vortex system in a compressible medium , 1991 .

[51]  Lucas O. Müller,et al.  Hyperbolic reformulation of a 1D viscoelastic blood flow model and ADER finite volume schemes , 2014, J. Comput. Phys..

[52]  Richard B. Pember,et al.  Numerical Methods for Hyperbolic Conservation Laws with Stiff Relaxation II. Higher-Order Godunov Methods , 1993, SIAM J. Sci. Comput..

[53]  Bruno Després,et al.  Asymptotic preserving and positive schemes for radiation hydrodynamics , 2006, J. Comput. Phys..

[54]  E. M. Lifshitz,et al.  Electrodynamics of continuous media , 1961 .

[55]  Dinshaw S. Balsara,et al.  Notes on the Eigensystem of Magnetohydrodynamics , 1996, SIAM J. Appl. Math..

[56]  Ilya Peshkov,et al.  On a pure hyperbolic alternative to the Navier-Stokes equations , 2014 .

[57]  Guang-Shan Jiang,et al.  A High-Order WENO Finite Difference Scheme for the Equations of Ideal Magnetohydrodynamics , 1999 .

[58]  Dimitris Drikakis,et al.  An Eulerian finite‐volume scheme for large elastoplastic deformations in solids , 2010 .

[59]  Eleuterio F. Toro,et al.  Advection-Diffusion-Reaction Equations: Hyperbolization and High-Order ADER Discretizations , 2014, SIAM J. Sci. Comput..

[60]  Gérard A. Maugin,et al.  Electrodynamics of Continua I: Foundations and Solid Media , 1989 .

[61]  M. J. Castro,et al.  ADER schemes on unstructured meshes for nonconservative hyperbolic systems: Applications to geophysical flows , 2009 .

[62]  D. Balsara,et al.  A Staggered Mesh Algorithm Using High Order Godunov Fluxes to Ensure Solenoidal Magnetic Fields in Magnetohydrodynamic Simulations , 1999 .

[63]  Hyperbolicity of the Nonlinear Models of Maxwell’s Equations , 2004 .

[64]  I. Müller,et al.  Rational Extended Thermodynamics , 1993 .

[65]  Eleuterio F. Toro,et al.  Implicit, semi-analytical solution of the generalized Riemann problem for stiff hyperbolic balance laws , 2015, J. Comput. Phys..

[66]  Michael Dumbser,et al.  ADER-WENO finite volume schemes with space-time adaptive mesh refinement , 2012, J. Comput. Phys..

[67]  E. I. Romenskii Hyperbolic equations of Maxwell's nonlinear model of elastoplastic heat-conducting media , 1989 .

[68]  Michael Dumbser,et al.  Cell centered direct Arbitrary-Lagrangian-Eulerian ADER-WENO finite volume schemes for nonlinear hyperelasticity , 2016 .

[69]  D. F. Johnston,et al.  Representations of the Rotation and Lorentz Groups and Their Applications , 1965 .

[70]  Michael Dumbser,et al.  Arbitrary high order PNPM schemes on unstructured meshes for the compressible Navier–Stokes equations , 2010 .

[71]  Z. Xin,et al.  The relaxation schemes for systems of conservation laws in arbitrary space dimensions , 1995 .

[72]  Dieter Biskamp,et al.  Magnetic Reconnection via Current Sheets , 1986 .

[73]  Giovanni Russo,et al.  Uniformly Accurate Schemes for Hyperbolic Systems with Relaxation , 1997 .

[74]  Michael Dumbser,et al.  Space-time adaptive ADER-DG schemes for dissipative flows: Compressible Navier-Stokes and resistive MHD equations , 2016, Comput. Phys. Commun..

[75]  Michael Dumbser,et al.  Finite volume schemes of very high order of accuracy for stiff hyperbolic balance laws , 2008, J. Comput. Phys..

[76]  Michael Dumbser,et al.  A new efficient formulation of the HLLEM Riemann solver for general conservative and non-conservative hyperbolic systems , 2016, J. Comput. Phys..

[77]  Miroslav Grmela,et al.  Time reversal in nonequilibrium thermodynamics. , 2014, Physical review. E, Statistical, nonlinear, and soft matter physics.

[78]  George Em Karniadakis,et al.  A Discontinuous Galerkin Method for the Viscous MHD Equations , 1999 .

[79]  Philip L. Roe,et al.  Numerical solution of a 10-moment model for nonequilibrium gasdynamics , 1995 .

[80]  R. A. Minlos,et al.  Representations of the Rotation and Lorentz Groups and Their Applications , 1965 .

[81]  Tosio Kato,et al.  The Cauchy problem for quasi-linear symmetric hyperbolic systems , 1975 .

[82]  A. Stroud Approximate calculation of multiple integrals , 1973 .

[83]  Phillip Colella,et al.  A modified higher order Godunov's scheme for stiff source conservative hydrodynamics , 2007, J. Comput. Phys..

[84]  Michael Dumbser,et al.  Numerical simulations of high Lundquist number relativistic magnetic reconnection , 2011, 1103.5924.

[85]  Sander Rhebergen,et al.  Discontinuous Galerkin finite element methods for hyperbolic nonconservative partial differential equations , 2008, J. Comput. Phys..

[86]  E. I. Romensky,et al.  Hyperbolic systems of thermodynamically compatible conservation laws in continuum mechanics , 1998 .

[87]  R. Samtaney,et al.  Formation of plasmoid chains in magnetic reconnection. , 2009, Physical review letters.

[88]  Michael Dumbser,et al.  ADER Schemes for Nonlinear Systems of Stiff Advection–Diffusion–Reaction Equations , 2011, J. Sci. Comput..

[89]  Alireza Mazaheri,et al.  Very efficient high-order hyperbolic schemes for time-dependent advection–diffusion problems: Third-, fourth-, and sixth-order , 2014 .

[90]  Tommaso Ruggeri,et al.  Dispersion relation in the high frequency limit and non linear wave stability for hyperbolic dissipative systems , 1992 .

[91]  J. M. Picone,et al.  Evolution of the Orszag-Tang vortex system in a compressible medium. I: Initial average subsonic flow , 1989 .

[92]  P. Roe,et al.  On Godunov-type methods near low densities , 1991 .

[93]  S. Orszag,et al.  Small-scale structure of two-dimensional magnetohydrodynamic turbulence , 1979, Journal of Fluid Mechanics.

[94]  J Korea,et al.  The Magnetohydrodynamic Kelvin-Helmholtz Instability. III. The Role of Sheared Magnetic Field in Planar Flows , 1999, astro-ph/9909033.

[95]  Richard Saurel,et al.  Solid-fluid diffuse interface model in cases of extreme deformations , 2009, J. Comput. Phys..

[96]  Stéphane Clain,et al.  Improved detection criteria for the multi-dimensional optimal order detection (MOOD) on unstructured meshes with very high-order polynomials , 2012 .

[97]  Michael Dumbser,et al.  A posteriori subcell limiting of the discontinuous Galerkin finite element method for hyperbolic conservation laws , 2014, J. Comput. Phys..

[98]  Michael Dumbser,et al.  The discontinuous Galerkin method with Lax-Wendroff type time discretizations , 2005 .

[99]  C. Dafermos Hyberbolic Conservation Laws in Continuum Physics , 2000 .

[100]  Eleuterio F. Toro,et al.  Reformulations for general advection-diffusion-reaction equations and locally implicit ADER schemes , 2014, J. Comput. Phys..

[101]  Michael Dumbser,et al.  On Arbitrary-Lagrangian-Eulerian One-Step WENO Schemes for Stiff Hyperbolic Balance Laws , 2012, 1207.6407.

[102]  Sylvie Benzoni-Gavage,et al.  Multi-dimensional hyperbolic partial differential equations , 2006 .

[103]  Jim E. Morel,et al.  Methods for hyperbolic systems with stiff relaxation , 2002 .

[104]  Michael Dumbser,et al.  High order ADER schemes for a unified first order hyperbolic formulation of continuum mechanics: Viscous heat-conducting fluids and elastic solids , 2015, J. Comput. Phys..

[105]  E. I. Romensky,et al.  Thermodynamics and Hyperbolic Systems of Balance Laws in Continuum Mechanics , 2001 .

[106]  Manuel Jesús Castro Díaz,et al.  High order finite volume schemes based on reconstruction of states for solving hyperbolic systems with nonconservative products. Applications to shallow-water systems , 2006, Math. Comput..

[107]  Eleuterio F. Toro,et al.  ADER: Arbitrary High Order Godunov Approach , 2002, J. Sci. Comput..

[108]  Michael Dumbser,et al.  On Universal Osher-Type Schemes for General Nonlinear Hyperbolic Conservation Laws , 2011 .

[109]  S. Osher,et al.  Uniformly high order accurate essentially non-oscillatory schemes, 111 , 1987 .

[110]  Erik Burman,et al.  Numerical analysis of two operator splitting methods for an hyperbolic system of conservation laws with stiff relaxation terms , 1995 .

[111]  Eleuterio F. Toro,et al.  Centred TVD schemes for hyperbolic conservation laws , 2000 .

[112]  Arne Taube,et al.  A high-order discontinuous Galerkin method with time-accurate local time stepping for the Maxwell equations , 2009 .

[113]  Michael Dumbser,et al.  FORCE schemes on unstructured meshes I: Conservative hyperbolic systems , 2009, J. Comput. Phys..

[114]  A. Rukhadze,et al.  Force on matter in an electromagnetic field , 2009 .

[115]  G. Vojta,et al.  Extended Irreversible Thermodynamics , 1998 .

[116]  Michael Dumbser,et al.  A Simple Extension of the Osher Riemann Solver to Non-conservative Hyperbolic Systems , 2011, J. Sci. Comput..

[117]  Jung Yul Yoo,et al.  Hyperbolicity and change of type in the flow of viscoelastic fluids through channels , 1985 .

[118]  S. Godunov,et al.  Systems of thermodynamically coordinated laws of conservation invariant under rotations , 1996 .

[119]  Dima Bolmatov,et al.  Thermodynamic behaviour of supercritical matter , 2013, Nature Communications.

[120]  Alireza Mazaheri,et al.  First-Order Hyperbolic System Method for Time-Dependent Advection-Diffusion Problems , 2014 .

[121]  G. Russo,et al.  Implicit-explicit Runge-Kutta schemes for stiff systems of differential equations , 2000 .

[122]  Michael Dumbser,et al.  Space–time adaptive ADER discontinuous Galerkin finite element schemes with a posteriori sub-cell finite volume limiting , 2014, 1412.0081.

[123]  A. D. Resnyansky,et al.  DYNA-modelling of the high-velocity impact problems with a split-element algorithm , 2002 .

[124]  Dinshaw Balsara,et al.  Second-Order-accurate Schemes for Magnetohydrodynamics with Divergence-free Reconstruction , 2003, astro-ph/0308249.

[125]  Michael Dumbser,et al.  Solving the relativistic magnetohydrodynamics equations with ADER discontinuous Galerkin methods, a posteriori subcell limiting and adaptive mesh refinement , 2015, 1504.07458.

[126]  Stéphane Clain,et al.  The MOOD method in the three-dimensional case: Very-High-Order Finite Volume Method for Hyperbolic Systems. , 2012 .

[127]  Oscar A. Reula,et al.  Nonlinear electrodynamics as a symmetric hyperbolic system , 2015, 1507.02262.

[128]  Dinshaw S. Balsara,et al.  Multidimensional Riemann problem with self-similar internal structure. Part I - Application to hyperbolic conservation laws on structured meshes , 2014, J. Comput. Phys..

[129]  H. Minkowski,et al.  Die Grundgleichungen für die elektromagnetischen Vorgänge in bewegten Körpern , 1910 .

[130]  S. K. Godunov,et al.  Nonstationary equations of nonlinear elasticity theory in eulerian coordinates , 1972 .

[131]  Stéphane Clain,et al.  The Multidimensional Optimal Order Detection method in the three‐dimensional case: very high‐order finite volume method for hyperbolic systems , 2013 .

[132]  M. J. Castro,et al.  FORCE schemes on unstructured meshes II: Non-conservative hyperbolic systems , 2010 .

[133]  Max Abraham,et al.  Zur Elektrodynamik bewegter Körper , 1909 .

[134]  E. Dill,et al.  Thermodynamic restrictions on the constitutive equations of electromagnetic theory , 1971 .

[135]  Ilya Peshkov,et al.  Thermodynamically consistent nonlinear model of elastoplastic Maxwell medium , 2010 .

[136]  Richard B. Pember,et al.  Numerical Methods for Hyperbolic Conservation Laws With Stiff Relaxation I. Spurious Solutions , 1993, SIAM J. Appl. Math..