Core-Shell Nanoparticle-Enhanced Raman Spectroscopy.

Core-shell nanoparticles are at the leading edge of the hot research topics and offer a wide range of applications in optics, biomedicine, environmental science, materials, catalysis, energy, and so forth, due to their excellent properties such as versatility, tunability, and stability. They have attracted enormous interest attributed to their dramatically tunable physicochemical features. Plasmonic core-shell nanomaterials are extensively used in surface-enhanced vibrational spectroscopies, in particular, surface-enhanced Raman spectroscopy (SERS), due to the unique localized surface plasmon resonance (LSPR) property. This review provides a comprehensive overview of core-shell nanoparticles in the context of fundamental and application aspects of SERS and discusses numerous classes of core-shell nanoparticles with their unique strategies and functions. Further, herein we also introduce the concept of shell-isolated nanoparticle-enhanced Raman spectroscopy (SHINERS) in detail because it overcomes the long-standing limitations of material and morphology generality encountered in traditional SERS. We then explain the SERS-enhancement mechanism with core-shell nanoparticles, as well as three generations of SERS hotspots for surface analysis of materials. To provide a clear view for readers, we summarize various approaches for the synthesis of core-shell nanoparticles and their applications in SERS, such as electrochemistry, bioanalysis, food safety, environmental safety, cultural heritage, materials, catalysis, and energy storage and conversion. Finally, we exemplify about the future developments in new core-shell nanomaterials with different functionalities for SERS and other surface-enhanced spectroscopies.

[1]  Charles M. Lieber,et al.  Coaxial silicon nanowires as solar cells and nanoelectronic power sources , 2007, Nature.

[2]  Bhavya Sharma,et al.  Surface-Enhanced Raman Spectroscopy Biosensing: In Vivo Diagnostics and Multimodal Imaging. , 2016, Analytical chemistry.

[3]  M. Girolami,et al.  Preferential Attachment of Specific Fluorescent Dyes and Dye Labeled DNA Sequences in a Surface Enhanced Raman Scattering Multiplex. , 2016, Analytical chemistry.

[4]  Ximei Qian,et al.  Surface-enhanced Raman nanoparticle beacons based on bioconjugated gold nanocrystals and long range plasmonic coupling. , 2008, Journal of the American Chemical Society.

[5]  F. Claro,et al.  Theory of surface enhanced Raman scattering in colloids , 1993 .

[6]  M. Albrecht,et al.  Anomalously intense Raman spectra of pyridine at a silver electrode , 1977 .

[7]  Zhilin Yang,et al.  A facile method for the synthesis of large‐size Ag nanoparticles as efficient SERS substrates , 2016 .

[8]  J. Hupp,et al.  Synthesis of silver nanodisks using polystyrene mesospheres as templates. , 2002, Journal of the American Chemical Society.

[9]  N. Kim,et al.  Silver-particle-based surface-enhanced Raman scattering spectroscopy for biomolecular sensing and recognition. , 2006, Langmuir : the ACS journal of surfaces and colloids.

[10]  Yu Han,et al.  Site-specific growth of Au-Pd alloy horns on Au nanorods: a platform for highly sensitive monitoring of catalytic reactions by surface enhancement Raman spectroscopy. , 2013, Journal of the American Chemical Society.

[11]  W. Peng,et al.  Ag@C Core–Shell Colloidal Nanoparticles Prepared by the Hydrothermal Route and the Low Temperature Heating–Stirring Method and Their Application in Surface Enhanced Raman Scattering , 2012 .

[12]  Minoru Osada,et al.  Two‐Dimensional Dielectric Nanosheets: Novel Nanoelectronics From Nanocrystal Building Blocks , 2012, Advanced materials.

[13]  B. Ren,et al.  Enhancing the Photothermal Stability of Plasmonic Metal Nanoplates by a Core‐Shell Architecture , 2011, Advanced materials.

[14]  D. A. Stuart,et al.  Surface Enhanced Raman Spectroscopy: New Materials, Concepts, Characterization Tools, and Applications , 2005 .

[15]  R. Dasari,et al.  Single Molecule Detection Using Surface-Enhanced Raman Scattering (SERS) , 1997 .

[16]  T. Furtak Current understanding of the mechanism of surface enhanced Raman scattering , 1983 .

[17]  Juhyoun Kwak,et al.  Ordered nanoporous arrays of carbon supporting high dispersions of platinum nanoparticles , 2001, Nature.

[18]  Sanjiv S. Gambhir,et al.  Multiplexed imaging of surface enhanced Raman scattering nanotags in living mice using noninvasive Raman spectroscopy , 2009, Proceedings of the National Academy of Sciences.

[19]  Xianfan Xu,et al.  Phosphorene: an unexplored 2D semiconductor with a high hole mobility. , 2014, ACS nano.

[20]  Harald Giessen,et al.  Plasmonic gas and chemical sensing , 2014 .

[21]  Zhilin Yang,et al.  SHINERS and plasmonic properties of Au Core SiO2 shell nanoparticles with optimal core size and shell thickness , 2013 .

[22]  Hui Zhang,et al.  Noble-metal nanocrystals with concave surfaces: synthesis and applications. , 2012, Angewandte Chemie.

[23]  Luis M Liz-Marzán,et al.  Au@pNIPAM colloids as molecular traps for surface-enhanced, spectroscopic, ultra-sensitive analysis. , 2009, Angewandte Chemie.

[24]  B. Ren,et al.  New strategies for surface-enhanced Raman scattering at transition-metal interfaces: Thickness-dependent characteristics of electrodeposited Pt-group films on gold and carbon , 1999 .

[25]  Zhilin Yang,et al.  Core-shell nanoparticle based SERS from hydrogen adsorbed on a rhodium(111) electrode. , 2011, Chemical communications.

[26]  J. Michiels,et al.  Single-molecule surface enhanced resonance Raman spectroscopy of the enhanced green fluorescent protein. , 2003, Journal of the American Chemical Society.

[27]  B. Yan,et al.  Manipulation of Pt∧Ag Nanostructures for Advanced Electrocatalyst , 2009 .

[28]  Kang Mao,et al.  A novel biosensor based on Au@Ag core-shell nanoparticles for SERS detection of arsenic (III). , 2016, Talanta.

[29]  Jian-Feng Li,et al.  Shell-isolated nanoparticle-enhanced Raman spectroscopy: expanding the versatility of surface-enhanced Raman scattering. , 2011, Annual review of analytical chemistry.

[30]  De‐Yin Wu,et al.  Extraordinary enhancement of Raman scattering from pyridine on single crystal Au and Pt electrodes by shell-isolated Au nanoparticles. , 2011, Journal of the American Chemical Society.

[31]  T. Akita,et al.  A one-pot protocol for synthesis of non-noble metal-based core-shell nanoparticles under ambient conditions: toward highly active and cost-effective catalysts for hydrolytic dehydrogenation of NH3BH3. , 2011, Chemical communications.

[32]  Eric C Le Ru,et al.  Single-molecule surface-enhanced Raman spectroscopy. , 2012, Annual review of physical chemistry.

[33]  Hans C. Gerritsen,et al.  Fluorescence Enhancement by Metal‐Core/Silica‐Shell Nanoparticles , 2006 .

[34]  S. Bell,et al.  Rapid, quantitative analysis of ppm/ppb nicotine using surface-enhanced Raman scattering from polymer-encapsulated Ag nanoparticles (gel-colls). , 2004, The Analyst.

[35]  Yong Ding,et al.  Surface analysis using shell-isolated nanoparticle-enhanced Raman spectroscopy , 2012, Nature Protocols.

[36]  B. Pettinger,et al.  Surface Raman spectroscopy at Pt electrodes , 1987 .

[37]  D. Grainger,et al.  Nanobiomaterials and Nanoanalysis: Opportunities for Improving the Science to Benefit Biomedical Technologies , 2008 .

[38]  Mengjing Hou,et al.  Pinhole-Containing, Subnanometer-Thick Al2O3 Shell-Coated Ag Nanorods as Practical Substrates for Quantitative Surface-Enhanced Raman Scattering , 2016 .

[39]  J. Hong,et al.  One-pot synthesis of trimetallic Au@PdPt core-shell nanoparticles with high catalytic performance. , 2013, ACS nano.

[40]  Mathieu Kociak,et al.  Zeptomol detection through controlled ultrasensitive surface-enhanced Raman scattering. , 2009, Journal of the American Chemical Society.

[41]  Yung Doug Suh,et al.  Nanogap-engineerable Raman-active nanodumbbells for single-molecule detection. , 2010, Nature materials.

[42]  Christy L. Haynes,et al.  Surface‐enhanced Raman sensors: early history and the development of sensors for quantitative biowarfare agent and glucose detection , 2005 .

[43]  Pietro Strobbia,et al.  Recent advances in plasmonic nanostructures for sensing: a review , 2015 .

[44]  De‐Yin Wu,et al.  Cations-modified cluster model for density-functional theory simulation of potential dependent Raman scattering from surface complex/electrode systems. , 2012, Chemical communications.

[45]  Sebastian Schlücker,et al.  Label-free SERS monitoring of chemical reactions catalyzed by small gold nanoparticles using 3D plasmonic superstructures. , 2013, Journal of the American Chemical Society.

[46]  Zhilin Yang,et al.  Dimeric Core–Shell Ag2@TiO2 Nanoparticles for Off-Resonance Raman Study of the TiO2–N719 Interface , 2015 .

[47]  Zhong-Qun Tian,et al.  Quantitative SHINERS analysis of temporal changes in the passive layer at a gold electrode surface in a thiosulfate solution. , 2015, Analytical chemistry.

[48]  B. Ren,et al.  Rational Design and Synthesis of γFe2O3@Au Magnetic Gold Nanoflowers for Efficient Cancer Theranostics , 2015, Advanced materials.

[49]  Yadong Li,et al.  Colloidal carbon spheres and their core/shell structures with noble-metal nanoparticles. , 2004, Angewandte Chemie.

[50]  M. Moskovits Surface‐enhanced Raman spectroscopy: a brief retrospective , 2005 .

[51]  You‐Nian Liu,et al.  Surface-enhanced Raman detection of melamine on silver-nanoparticle-decorated silver/carbon nanospheres: effect of metal ions. , 2011, ACS applied materials & interfaces.

[52]  Thomas R Huser,et al.  Surface-enhanced Raman scattering from individual au nanoparticles and nanoparticle dimer substrates. , 2005, Nano letters.

[53]  Z. Tian,et al.  Surface Raman spectroscopic studies of ruthenium, rhodium and palladium electrodes deposited on glassy carbon substrates , 1997 .

[54]  Z. Tian,et al.  Fabrication of core-shell Au-Pt nanoparticle film and its potential application as catalysis and SERS substrateElectronic supplementary information (ESI) available: AFM image and line scans of core-shell Au-Pt nanoparticle film (colour version of Fig. 4). See http://www.rsc.org/suppdata/jm/b3/b31486 , 2004 .

[55]  A. Corma,et al.  Gold-Catalyzed Synthesis of Aromatic Azo Compounds from Anilines and Nitroaromatics , 2008, Science.

[56]  Jian Ding,et al.  Controlled synthesis of multilayered gold nanoshells for enhanced photothermal therapy and SERS detection. , 2015, Small.

[57]  P. Jain,et al.  Calculated absorption and scattering properties of gold nanoparticles of different size, shape, and composition: applications in biological imaging and biomedicine. , 2006, The journal of physical chemistry. B.

[58]  M. Fleischmann,et al.  Raman spectra of pyridine adsorbed at a silver electrode , 1974 .

[59]  Wei-xian Zhang,et al.  Nanoscale Iron Particles for Environmental Remediation: An Overview , 2003 .

[60]  D. Astruc,et al.  Gold nanoparticles: assembly, supramolecular chemistry, quantum-size-related properties, and applications toward biology, catalysis, and nanotechnology. , 2004, Chemical reviews.

[61]  Catherine J. Murphy,et al.  Wet Chemical Synthesis of High Aspect Ratio Cylindrical Gold Nanorods , 2001 .

[62]  Tapas K. Kundu,et al.  Hot Spots in Ag Core−Au Shell Nanoparticles Potent for Surface-Enhanced Raman Scattering Studies of Biomolecules , 2007 .

[63]  Jian-Feng Li,et al.  "Smart" Ag Nanostructures for Plasmon-Enhanced Spectroscopies. , 2015, Journal of the American Chemical Society.

[64]  Jian-Feng Li,et al.  Synthesis of ultrathin and compact Au@MnO2 nanoparticles for shell-isolated nanoparticle-enhanced Raman spectroscopy (SHINERS) , 2012 .

[65]  Yuxiong Jiang,et al.  Characterization of surface water on Au core Pt-group metal shell nanoparticles coated electrodes by surface-enhanced Raman spectroscopy. , 2007, Chemical communications.

[66]  Xi Ling,et al.  Graphene‐Veiled Gold Substrate for Surface‐Enhanced Raman Spectroscopy , 2013, Advanced materials.

[67]  Alexander Eychmüller,et al.  Seeded Growth Synthesis of Uniform Gold Nanoparticles with Diameters of 15−300 nm , 2011 .

[68]  M. Natan,et al.  Glass-Coated, Analyte-Tagged Nanoparticles: A New Tagging System Based on Detection with Surface-Enhanced Raman Scattering , 2003 .

[69]  Joel I. Gersten,et al.  Rayleigh, Mie, and Raman scattering by molecules adsorbed on rough surfaces , 1980 .

[70]  Renato Zenobi,et al.  Nanoscale chemical imaging using tip-enhanced Raman spectroscopy: a critical review. , 2013, Angewandte Chemie.

[71]  A. Requicha,et al.  Plasmonics—A Route to Nanoscale Optical Devices , 2001 .

[72]  and H. Metiu,et al.  THE ELECTROMAGNETIC THEORY OF SURFACE ENHANCED SPECTROSCOPY , 1984 .

[73]  M. Albrecht,et al.  Plasma resonance enhancement of Raman scattering by pyridine adsorbed on silver or gold sol particles of size comparable to the excitation wavelength , 1979 .

[74]  Pavel Zrazhevskiy,et al.  Quantum dot imaging platform for single-cell molecular profiling , 2013, Nature Communications.

[75]  M. Cortie,et al.  Synthesis and optical properties of hybrid and alloy plasmonic nanoparticles. , 2011, Chemical reviews.

[76]  D. Qin,et al.  Galvanic replacement-free deposition of Au on Ag for core-shell nanocubes with enhanced chemical stability and SERS activity. , 2014, Journal of the American Chemical Society.

[77]  Mary Elizabeth Williams,et al.  Synthesis of Fe Oxide Core/Au Shell Nanoparticles by Iterative Hydroxylamine Seeding , 2004 .

[78]  A. Nitzan,et al.  Theoretical model for enhanced photochemistry on rough surfaces , 1981 .

[79]  Andreas Otto,et al.  Electronic effects in SERS by liquid water , 2005 .

[80]  B. Ren,et al.  Electrochemically Roughened Rhodium Electrode as a Substrate for Surface-enhanced Raman Spectroscopy , 2003 .

[81]  Meilin Liu,et al.  High-temperature surface enhanced Raman spectroscopy for in situ study of solid oxide fuel cell materials , 2014 .

[82]  T. C. Chuang,et al.  Synthesis and Characterization of Gold/Polypyrrole Core−Shell Nanocomposites and Elemental Gold Nanoparticles Based on the Gold-Containing Nanocomplexes Prepared by Electrochemical Methods in Aqueous Solutions , 2003 .

[83]  Alyson V. Whitney,et al.  Toward a thermally robust operando surface-enhanced raman spectroscopy substrate , 2007 .

[84]  Younan Xia,et al.  Localized surface plasmon resonance spectroscopy of single silver nanocubes. , 2005, Nano letters.

[85]  De‐Yin Wu,et al.  Raman spectroscopic investigation on TiO2-N719 dye interfaces using Ag@TiO2 nanoparticles and potential correlation strategies. , 2013, Chemphyschem : a European journal of chemical physics and physical chemistry.

[86]  Ryan A. Hackler,et al.  Probing the Chemistry of Alumina Atomic Layer Deposition Using Operando Surface-Enhanced Raman Spectroscopy , 2016 .

[87]  Shaoyi Jiang,et al.  Multifunctional magnetic-plasmonic nanoparticles for fast concentration and sensitive detection of bacteria using SERS. , 2012, Biosensors & bioelectronics.

[88]  Zhong-Qun Tian,et al.  When the signal is not from the original molecule to be detected: chemical transformation of para-aminothiophenol on Ag during the SERS measurement. , 2010, Journal of the American Chemical Society.

[89]  B. Pettinger,et al.  Tip-enhanced Raman spectroscopy: near-fields acting on a few molecules. , 2012, Annual review of physical chemistry.

[90]  L. Dick,et al.  Metal film over nanosphere (MFON) electrodes for surface-enhanced Raman spectroscopy (SERS): Improvements in surface nanostructure stability and suppression of irreversible loss , 2002 .

[91]  Martin Moskovits,et al.  How the localized surface plasmon became linked with surface-enhanced Raman spectroscopy , 2012, Notes and Records of the Royal Society.

[92]  Hiroharu Yui Electron-enhanced Raman scattering: a history of its discovery and spectroscopic applications to solution and interfacial chemistry , 2010, Analytical and bioanalytical chemistry.

[93]  Jinhuai Liu,et al.  Functionalized shell-isolated nanoparticle-enhanced Raman spectroscopy for selective detection of trinitrotoluene. , 2012, The Analyst.

[94]  Franklin Kim,et al.  Langmuir-Blodgett assembly of graphite oxide single layers. , 2009, Journal of the American Chemical Society.

[95]  Z. Tian,et al.  Probing the Electronic Structure of Heterogeneous Metal Interfaces by Transition Metal Shelled Gold Nanoparticle-Enhanced Raman Spectroscopy , 2016 .

[96]  Zhilin Yang,et al.  Optimization of SERS activities of gold nanoparticles and gold-core-palladium-shell nanoparticles by controlling size and shell thickness , 2008 .

[97]  B. Nowack,et al.  Occurrence, behavior and effects of nanoparticles in the environment. , 2007, Environmental pollution.

[98]  J. Rubim,et al.  SERS from pyridine adsorbed on electrodispersed platinum electrodes , 1989 .

[99]  George C. Schatz,et al.  Modeling the effect of small gaps in surface-enhanced Raman spectroscopy , 2012 .

[100]  Jian-Feng Li,et al.  Dielectric shell isolated and graphene shell isolated nanoparticle enhanced Raman spectroscopies and their applications. , 2015, Chemical Society reviews.

[101]  T. Lian,et al.  Efficient hot-electron transfer by a plasmon-induced interfacial charge-transfer transition , 2015, Science.

[102]  E. Coronado,et al.  The Optical Properties of Metal Nanoparticles: The Influence of Size, Shape, and Dielectric Environment , 2003 .

[103]  Mostafa A. El-Sayed,et al.  Surface-Enhanced Raman Scattering Studies on Aggregated Gold Nanorods† , 2003 .

[104]  Weihong Tan,et al.  Fabrication of Graphene-isolated-Au-nanocrystal Nanostructures for Multimodal Cell Imaging and Photothermal-enhanced Chemotherapy , 2014, Scientific Reports.

[105]  Liangbao Yang,et al.  Multifunctional TiO2‐Coated Ag Nanowire Arrays as Recyclable SERS Substrates for the Detection of Organic Pollutants , 2012 .

[106]  I. Willner,et al.  Single gold nanoparticles as real-time optical probes for the detection of NADH-dependent intracellular metabolic enzymatic pathways. , 2011, Angewandte Chemie.

[107]  P. K. Aravind,et al.  The effects of the interaction between resonances in the electromagnetic response of a sphere-plane structure; applications to surface enhanced spectroscopy , 1983 .

[108]  E. Johnston-Halperin,et al.  Progress, challenges, and opportunities in two-dimensional materials beyond graphene. , 2013, ACS nano.

[109]  Xiaohua Huang,et al.  Noble metals on the nanoscale: optical and photothermal properties and some applications in imaging, sensing, biology, and medicine. , 2008, Accounts of chemical research.

[110]  Frank Caruso,et al.  Multilayer assemblies of silica-encapsulated gold nanoparticles on decomposable colloid templates. , 2001 .

[111]  A. Bell,et al.  Enhanced activity of gold-supported cobalt oxide for the electrochemical evolution of oxygen. , 2011, Journal of the American Chemical Society.

[112]  Zhiyong Fan,et al.  Silver Nanodisks: Synthesis, Characterization, and Self-Assembly , 2002 .

[113]  Lin-Wang Wang,et al.  Facet development during platinum nanocube growth , 2014, Science.

[114]  B. Ren,et al.  Tip-enhanced Raman spectroscopy of benzenethiol adsorbed on Au and Pt single-crystal surfaces. , 2004, Angewandte Chemie.

[115]  Philippe Guyot-Sionnest,et al.  Synthesis and Optical Characterization of Au/Ag Core/Shell Nanorods , 2004 .

[116]  N. Zhang,et al.  Recent progress on metal core@semiconductor shell nanocomposites as a promising type of photocatalyst. , 2012, Nanoscale.

[117]  W. Xie,et al.  Hot electron-induced reduction of small molecules on photorecycling metal surfaces , 2015, Nature Communications.

[118]  P. Nordlander,et al.  Plasmons in strongly coupled metallic nanostructures. , 2011, Chemical reviews.

[119]  D. A. Stuart,et al.  In vivo glucose measurement by surface-enhanced Raman spectroscopy. , 2006, Analytical chemistry.

[120]  Emil Prodan,et al.  Quantum description of the plasmon resonances of a nanoparticle dimer. , 2009, Nano letters.

[121]  Balaprasad Ankamwar,et al.  Biological synthesis of triangular gold nanoprisms , 2004, Nature materials.

[122]  J. Nanda,et al.  In Situ Localized Surface Plasmon Resonance (LSPR) Spectroscopy to Investigate Kinetics of Chemical Bath Deposition of CdS Thin Films , 2015 .

[123]  H. Atwater,et al.  Plasmonics for improved photovoltaic devices. , 2010, Nature materials.

[124]  Dong H. Zhang,et al.  Orientation Study of Atactic Poly(methyl methacrylate) Thin Film by SERS and RAIR Spectra , 2002 .

[125]  K. Domen,et al.  Photocatalytic Water Splitting: Recent Progress and Future Challenges , 2010 .

[126]  J. F. Arenas,et al.  Charge-Transfer Processes in Surface-Enhanced Raman Scattering. Franck−Condon Active Vibrations of Pyrazine , 1996 .

[127]  De‐Yin Wu,et al.  Vibrational signature of double-end-linked molecules at Au nanojunctions probed by surface-enhanced Raman spectroscopy. , 2010, Chemistry.

[128]  J. Baumberg,et al.  Optical properties of nanostructured metal films. , 2004, Faraday discussions.

[129]  C. Murphy,et al.  Face-Dependent Shell-Isolated Nanoparticle Enhanced Raman Spectroscopy of 2,2′-Bipyridine on Au(100) and Au(111) , 2012 .

[130]  Bo-Qing Xu,et al.  Syntheses of Sub-30 nm Au@Pd Concave Nanocubes and Pt-on-(Au@Pd) Trimetallic Nanostructures as Highly Efficient Catalysts for Ethanol Oxidation , 2012 .

[131]  Jaebum Choo,et al.  Biological imaging of HEK293 cells expressing PLCgamma1 using surface-enhanced Raman microscopy. , 2007, Analytical chemistry.

[132]  Z. Tian,et al.  Extending Surface Raman Spectroscopy to Transition Metal Surfaces for Practical Applications. 1. Vibrational Properties of Thiocyanate and Carbon Monoxide Adsorbed on Electrochemically Activated Platinum Surfaces , 1997 .

[133]  George C Schatz,et al.  High-Resolution Distance Dependence Study of Surface-Enhanced Raman Scattering Enabled by Atomic Layer Deposition. , 2016, Nano letters.

[134]  Latha A. Gearheart,et al.  Aspect ratio dependence on surface enhanced Raman scattering using silver and gold nanorod substrates. , 2006, Physical chemistry chemical physics : PCCP.

[135]  M. J. Weaver,et al.  Surface-enhanced Raman scattering on uniform transition-metal films:  toward a versatile adsorbate vibrational strategy for solid-nonvacuum interfaces? , 1998, Analytical chemistry.

[136]  Jian-feng Li,et al.  Chemical Production of Thin Protective Coatings on Optical Nanotips for Tip-Enhanced Raman Spectroscopy , 2016 .

[137]  S. Dai,et al.  Robust SERS Substrates Generated by Coupling a Bottom-Up Approach and Atomic Layer Deposition , 2010 .

[138]  Yukihiro Ozaki,et al.  Recent progress and frontiers in the electromagnetic mechanism of surface-enhanced Raman scattering , 2014 .

[139]  Gerhard Ertl,et al.  Nanoscale probing of adsorbed species by tip-enhanced Raman spectroscopy. , 2004, Physical review letters.

[140]  A. Neto,et al.  Strong Light-Matter Interactions in Heterostructures of Atomically Thin Films. , 2013 .

[141]  L. Novotný,et al.  Antennas for light , 2011 .

[142]  W. Stöber,et al.  Controlled growth of monodisperse silica spheres in the micron size range , 1968 .

[143]  Shouheng Sun,et al.  Synthesis of AuAg alloy nanoparticles from core/shell-structured Ag/Au. , 2009, Small.

[144]  Bai Yang,et al.  Colloidal Self‐Assembly Meets Nanofabrication: From Two‐Dimensional Colloidal Crystals to Nanostructure Arrays , 2010, Advanced materials.

[145]  R. Zenobi,et al.  Nanoscale chemical analysis by tip-enhanced Raman spectroscopy , 2000 .

[146]  Yibin Ying,et al.  Surface-enhanced Raman scattering for quantitative detection of ethyl carbamate in alcoholic beverages , 2013, Analytical and Bioanalytical Chemistry.

[147]  Dau-Sing Y. Wang,et al.  Surface enhanced Raman scattering (SERS) by molecules adsorbed at spherical particles: errata. , 1980, Applied optics.

[148]  P. Hammond Form and Function in Multilayer Assembly: New Applications at the Nanoscale , 2004 .

[149]  Jing-fu Liu,et al.  Submonolayer-Pt-Coated Ultrathin Au Nanowires and Their Self-Organized Nanoporous Film: SERS and Catalysis Active Substrates for Operando SERS Monitoring of Catalytic Reactions. , 2014, The journal of physical chemistry letters.

[150]  C. Murphy,et al.  Room temperature, high-yield synthesis of multiple shapes of gold nanoparticles in aqueous solution. , 2004, Journal of the American Chemical Society.

[151]  R. W. Christy,et al.  Optical constants of transition metals: Ti, V, Cr, Mn, Fe, Co, Ni, and Pd , 1974 .

[152]  M. Kerker,et al.  Founding fathers of light scattering and surface-enhanced Raman scattering. , 1991, Applied optics.

[153]  C. Mirkin,et al.  Templated techniques for the synthesis and assembly of plasmonic nanostructures. , 2011, Chemical reviews.

[154]  N. Shah,et al.  Surface-enhanced Raman spectroscopy. , 2008, Annual review of analytical chemistry.

[155]  Jennifer A. Dougan,et al.  DNA detection using enzymatic signal production and SERS. , 2011, Chemical communications.

[156]  Jamie R Lead,et al.  Nanomaterials in the environment: Behavior, fate, bioavailability, and effects , 2008, Environmental toxicology and chemistry.

[157]  D. Goodman,et al.  The Nature of the Metal-Metal Bond in Bimetallic Surfaces , 1992, Science.

[158]  Younan Xia,et al.  Synthesis of silver nanostructures with controlled shapes and properties. , 2007, Accounts of chemical research.

[159]  Eun Kyu Lee,et al.  SERS imaging of HER2-overexpressed MCF7 cells using antibody-conjugated gold nanorods. , 2009, Physical chemistry chemical physics : PCCP.

[160]  Bo-Qing Xu,et al.  Pt Flecks on Colloidal Au (Pt∧Au) as Nanostructured Anode Catalysts for Electrooxidation of Formic Acid , 2009 .

[161]  K. Domen,et al.  Photocatalyst releasing hydrogen from water , 2006, Nature.

[162]  David L. Carroll,et al.  Synthesis and Characterization of Truncated Triangular Silver Nanoplates , 2002 .

[163]  A. N. Grigorenko,et al.  Graphene plasmonics , 2012, Nature Photonics.

[164]  H. Too,et al.  Core-shell Ag-Au nanoparticles from replacement reaction in organic medium. , 2005, The journal of physical chemistry. B.

[165]  Jeanne P. Haushalter,et al.  Surface-enhanced Raman spectroscopy of adsorbates on semiconductor electrode surfaces: tris(bipyridine)ruthenium(II) adsorbed on silver-modified n-gallium arsenide(100) , 1983 .

[166]  M. Chi,et al.  Core/shell Pd/FePt nanoparticles as an active and durable catalyst for the oxygen reduction reaction. , 2010, Journal of the American Chemical Society.

[167]  G. Frens Controlled Nucleation for the Regulation of the Particle Size in Monodisperse Gold Suspensions , 1973 .

[168]  Huanjun Chen,et al.  Gold nanorods and their plasmonic properties. , 2013, Chemical Society reviews.

[169]  Chao Huang,et al.  A durable surface-enhanced Raman scattering substrate: ultrathin carbon layer encapsulated Ag nanoparticle arrays on indium-tin-oxide glass. , 2015, Physical chemistry chemical physics : PCCP.

[170]  M. Grätzel Dye-sensitized solar cells , 2003 .

[171]  Younan Xia,et al.  Chemical synthesis of novel plasmonic nanoparticles. , 2009, Annual review of physical chemistry.

[172]  S. Gambhir,et al.  Noninvasive molecular imaging of small living subjects using Raman spectroscopy , 2008, Proceedings of the National Academy of Sciences.

[173]  Mostafa A. El-Sayed,et al.  A Real-Time Surface Enhanced Raman Spectroscopy Study of Plasmonic Photothermal Cell Death Using Targeted Gold Nanoparticles. , 2016, Journal of the American Chemical Society.

[174]  Hong Wei,et al.  Hot spots in different metal nanostructures for plasmon-enhanced Raman spectroscopy. , 2013, Nanoscale.

[175]  L. Liz‐Marzán,et al.  Silica gels with tailored, gold nanorod-driven optical functionalities , 2004 .

[176]  Nannan Mao,et al.  Graphene: a platform for surface-enhanced Raman spectroscopy. , 2013, Small.

[177]  Naomi J Halas,et al.  Nanoscale control of near-infrared fluorescence enhancement using Au nanoshells. , 2008, Small.

[178]  Suljo Linic,et al.  Catalytic and photocatalytic transformations on metal nanoparticles with targeted geometric and plasmonic properties. , 2013, Accounts of chemical research.

[179]  R. V. Van Duyne,et al.  Toward a glucose biosensor based on surface-enhanced Raman scattering. , 2003, Journal of the American Chemical Society.

[180]  Shouheng Sun,et al.  Structure-induced enhancement in electrooxidation of trimetallic FePtAu nanoparticles. , 2012, Journal of the American Chemical Society.

[181]  Yong Wang,et al.  Development of polymer-encapsulated metal nanoparticles as surface-enhanced Raman scattering probes. , 2008, Small.

[182]  R. Birke,et al.  Time-dependent picture of the charge-transfer contributions to surface enhanced Raman spectroscopy. , 2007, The Journal of chemical physics.

[183]  Bing Yan,et al.  SERS tags: novel optical nanoprobes for bioanalysis. , 2013, Chemical reviews.

[184]  Younan Xia,et al.  Transformation of Silver Nanospheres into Nanobelts and Triangular Nanoplates through a Thermal Process , 2003 .

[185]  Marco Leona,et al.  Identification of organic colorants in fibers, paints, and glazes by surface enhanced Raman spectroscopy. , 2010, Accounts of chemical research.

[186]  A. Gewirth,et al.  Shell‐isolated nanoparticle enhanced Raman spectroscopy (SHINERS) investigation of benzotriazole film formation on Cu(100), Cu(111), and Cu(poly) , 2012 .

[187]  Koen Raemdonck,et al.  Advanced nanogel engineering for drug delivery , 2009 .

[188]  Lijia Liang,et al.  Abstract P2-05-15: Exploring type II microcalcifications in benign, premalignant and malignant breast lesions by shell-isolated nanoparticle-enhanced Raman spectroscopy (SHINERS) , 2015 .

[189]  Duncan Graham,et al.  Simultaneous detection and quantification of three bacterial meningitis pathogens by SERS , 2014 .

[190]  De‐Yin Wu,et al.  Surface enhanced Raman scattering from transition metal nano-wire array and the theoretical consideration , 2002 .

[191]  M. Natan,et al.  Self-Assembled Metal Colloid Monolayers: An Approach to SERS Substrates , 1995, Science.

[192]  A. S. Davis,et al.  Near-infrared surface-enhanced Raman spectroscopy (NIR-SERS) for the identification of eosin Y: theoretical calculations and evaluation of two different nanoplasmonic substrates. , 2012, The journal of physical chemistry. A.

[193]  Yue Hu,et al.  Few-Layer Graphene-Encapsulated Metal Nanoparticles for Surface-Enhanced Raman Spectroscopy , 2014 .

[194]  Zhilin Yang,et al.  Plasmon-Enhanced Second-Harmonic Generation Nanorulers with Ultrahigh Sensitivities. , 2015, Nano letters.

[195]  Duncan Graham,et al.  The next generation of advanced spectroscopy: surface enhanced Raman scattering from metal nanoparticles. , 2010, Angewandte Chemie.

[196]  Garnett W. Bryant,et al.  Metal‐nanoparticle plasmonics , 2008 .

[197]  G. Schatz,et al.  Pyridine-Ag20 cluster: a model system for studying surface-enhanced Raman scattering. , 2006, Journal of the American Chemical Society.

[198]  A. Lu,et al.  Magnetic nanoparticles: synthesis, protection, functionalization, and application. , 2007, Angewandte Chemie.

[199]  Heikki Tenhu,et al.  Gold nanoparticles protected with pH and temperature-sensitive diblock copolymers. , 2007, Langmuir : the ACS journal of surfaces and colloids.

[200]  Jeremy J. Baumberg,et al.  Revealing the quantum regime in tunnelling plasmonics , 2012, Nature.

[201]  J. L. Yang,et al.  Chemical mapping of a single molecule by plasmon-enhanced Raman scattering , 2013, Nature.

[202]  N. Halas,et al.  Surface-enhanced Raman spectroscopy of DNA. , 2008, Journal of the American Chemical Society.

[203]  A. Henglein,et al.  Photochemistry of semiconductor colloids. 22. Electron ejection from illuminated cadmium sulfide into attached titanium and zinc oxide particles , 1987 .

[204]  Li Zhang,et al.  Visualizing coherent intermolecular dipole–dipole coupling in real space , 2016, Nature.

[205]  Jianding Qiu,et al.  Electrochemical immunosensor for carcinoembryonic antigen based on signal amplification strategy of graphene and Fe3O4/Au NPs , 2016 .

[206]  Harald Giessen,et al.  Plasmonic smart dust for probing local chemical reactions. , 2013, Nano letters.

[207]  De‐Yin Wu,et al.  Surface-Enhanced Raman Scattering: From Noble to Transition Metals and from Rough Surfaces to Ordered Nanostructures , 2002 .

[208]  Jeffrey N. Anker,et al.  Biosensing with plasmonic nanosensors. , 2008, Nature materials.

[209]  Marc D Porter,et al.  Detection of the potential pancreatic cancer marker MUC4 in serum using surface-enhanced Raman scattering. , 2011, Analytical chemistry.

[210]  A. S. Moses,et al.  Imaging and drug delivery using theranostic nanoparticles. , 2010, Advanced drug delivery reviews.

[211]  L. Tsakalakos Nanostructures for photovoltaics , 2008 .

[212]  Shuming Nie,et al.  Spectroscopic tags using dye-embedded nanoparticles and surface-enhanced Raman scattering. , 2003, Analytical chemistry.

[213]  Mark L Brongersma,et al.  Introductory lecture: nanoplasmonics. , 2015, Faraday discussions.

[214]  Xiaohu Gao,et al.  Direct Characterization of Polymer Encapsulated CdSe/CdS/ZnS Quantum Dots. , 2016, Surface science.

[215]  Yu-Ting Chen,et al.  Investigation of Various Types of Nanorods as Sensitive Surface-Enhanced Raman Scattering Substrates , 2015, IEEE Transactions on NanoBioscience.

[216]  Steven R. Emory,et al.  Probing Single Molecules and Single Nanoparticles by Surface-Enhanced Raman Scattering , 1997, Science.

[217]  Daniel Wasserman,et al.  Review of mid-infrared plasmonic materials , 2015 .

[218]  Jian-Feng Li,et al.  Electrochemical shell-isolated nanoparticle-enhanced Raman spectroscopy: correlating structural information and adsorption processes of pyridine at the Au(hkl) single crystal/solution interface. , 2015, Journal of the American Chemical Society.

[219]  Jian-Feng Li,et al.  Electrochemical surface-enhanced Raman spectroscopy of nanostructures. , 2008, Chemical Society reviews.

[220]  Branimir Radisavljevic,et al.  Integrated circuits and logic operations based on single-layer MoS2. , 2011, ACS nano.

[221]  De‐Yin Wu,et al.  Chemical enhancement effects in SERS spectra: A quantum chemical study of pyridine interacting with copper, silver, gold and platinum metals , 2008 .

[222]  Jing-fu Liu,et al.  Use of Triton X-114 as a weak capping agent for one-pot aqueous phase synthesis of ultrathin noble metal nanowires and a primary study of their electrocatalytic activity. , 2010, Chemical communications.

[223]  J. Creighton Contributions to the early development of surface-enhanced Raman spectroscopy , 2010, Notes and Records of the Royal Society.

[224]  Yuxiong Jiang,et al.  Surface-enhanced Raman spectroscopy using gold-core platinum-shell nanoparticle film electrodes: toward a versatile vibrational strategy for electrochemical interfaces. , 2006, Langmuir : the ACS journal of surfaces and colloids.

[225]  A. Pandikumar,et al.  Titania@gold plasmonic nanoarchitectures: An ideal photoanode for dye-sensitized solar cells , 2016 .

[226]  Younan Xia,et al.  Gold nanostructures: engineering their plasmonic properties for biomedical applications. , 2006, Chemical Society reviews.

[227]  P. Messersmith,et al.  Interfacial Assembly of Mussel‐Inspired Au@Ag@ Polydopamine Core–Shell Nanoparticles for Recyclable Nanocatalysts , 2014, Advanced materials.

[228]  Michael J. Campolongo,et al.  Building plasmonic nanostructures with DNA. , 2011, Nature nanotechnology.

[229]  Zhong-Qun Tian,et al.  Enhanced Raman scattering from iron electrodes , 1987 .

[230]  A. H. Hight Walker,et al.  Gold nanostar @ iron oxide core–shell nanostructures: synthesis, characterization, and demonstrated surface-enhanced Raman scattering properties , 2012, Journal of Nanoparticle Research.

[231]  Kadir Aslan,et al.  Fluorescent core-shell Ag@SiO2 nanocomposites for metal-enhanced fluorescence and single nanoparticle sensing platforms. , 2007, Journal of the American Chemical Society.

[232]  M. J. Weaver,et al.  Transition metal-coated nanoparticle films: vibrational characterization with surface-enhanced Raman scattering. , 2002, Journal of the American Chemical Society.

[233]  K. Tang,et al.  CTAB-assisted hydrothermal synthesis of Ag/C nanostructures , 2006 .

[234]  Huangxian Ju,et al.  Signal amplification using functional nanomaterials for biosensing. , 2012, Chemical Society reviews.

[235]  P. K. Aravind,et al.  The interaction between electromagnetic resonances and its role in spectroscopic studies of molecules adsorbed on colloidal particles or metal spheres , 1981 .

[236]  Huanjun Chen,et al.  Unraveling the Evolution and Nature of the Plasmons in (Au Core)–(Ag Shell) Nanorods , 2012, Advanced materials.

[237]  C. Haynes,et al.  Nanosphere Lithography: A Versatile Nanofabrication Tool for Studies of Size-Dependent Nanoparticle Optics , 2001 .

[238]  M. J. Weaver,et al.  PROBING MOLECULAR VIBRATIONS AT CATALYTICALLY SIGNIFICANT INTERFACES : A NEW UBIQUITY OF SURFACE-ENHANCED RAMAN SCATTERING , 1998 .

[239]  De‐Yin Wu,et al.  Nanostructure-based plasmon-enhanced Raman spectroscopy for surface analysis of materials , 2016 .

[240]  Martin Moskovits,et al.  Surface roughness and the enhanced intensity of Raman scattering by molecules adsorbed on metals , 1978 .

[241]  Pablo G. Etchegoin,et al.  Rigorous justification of the |E|4 enhancement factor in Surface Enhanced Raman Spectroscopy☆ , 2006 .

[242]  Zili Wu,et al.  In Situ High Temperature Surface Enhanced Raman Spectroscopy for the Study of Interface Phenomena: Probing a Solid Acid on Alumina , 2011 .

[243]  E. Burstein,et al.  Surface-Electromagnetic-Wave-Enhanced Raman Scattering by Overlayers on Metals , 1976 .

[244]  Wenquan Lu,et al.  Silicon‐Based Nanomaterials for Lithium‐Ion Batteries: A Review , 2014 .

[245]  K. Turcheniuk,et al.  Gold-graphene nanocomposites for sensing and biomedical applications. , 2015, Journal of materials chemistry. B.

[246]  Bhavya Sharma,et al.  Molecular plasmonics for nanoscale spectroscopy. , 2014, Chemical Society reviews.

[247]  Zhong Lin Wang,et al.  Shell-isolated nanoparticle-enhanced Raman spectroscopy , 2010, Nature.

[248]  Leon Hirsch,et al.  Nanoshell-Enabled Photonics-Based Imaging and Therapy of Cancer , 2004, Technology in cancer research & treatment.

[249]  P. Nordlander,et al.  A Hybridization Model for the Plasmon Response of Complex Nanostructures , 2003, Science.

[250]  Jian-Feng Li,et al.  Surface-enhanced Raman scattering from transition metals with special surface morphology and nanoparticle shape. , 2006, Faraday discussions.

[251]  R. V. Duyne,et al.  Surface-enhanced resonance Raman spectroscopy of adsorbates on semiconductor electrode surfaces. 2. In situ studies of transition metal (iron and ruthenium) complexes on silver/gallium arsenide and silver/silicon , 1985 .

[252]  Vincent M Rotello,et al.  Detection and identification of proteins using nanoparticle-fluorescent polymer 'chemical nose' sensors. , 2007, Nature nanotechnology.

[253]  Renren Deng,et al.  Tuning upconversion through energy migration in core-shell nanoparticles. , 2011, Nature materials.

[254]  V. Shalaev,et al.  Alternative Plasmonic Materials: Beyond Gold and Silver , 2013, Advanced materials.

[255]  D. Zahn,et al.  Surface-enhanced Raman spectroscopy of semiconductor nanostructures , 2016 .

[256]  P. Jain,et al.  Au nanoparticles target cancer , 2007 .

[257]  May D. Wang,et al.  In vivo tumor targeting and spectroscopic detection with surface-enhanced Raman nanoparticle tags , 2008, Nature Biotechnology.

[258]  Snigdhamayee Praharaj,et al.  Synthesis of Normal and Inverted Gold−Silver Core−Shell Architectures in β-Cyclodextrin and Their Applications in SERS , 2007 .

[259]  Shaoliang Guan,et al.  Structure Sensitivity in Catalytic Hydrogenation at Platinum Surfaces Measured by Shell-Isolated Nanoparticle Enhanced Raman Spectroscopy (SHINERS) , 2016 .

[260]  Robert E. Benner,et al.  Surface plasmon contribution to SERS , 1980 .

[261]  Wei Huang,et al.  Enhancing solar cell efficiency: the search for luminescent materials as spectral converters. , 2013, Chemical Society reviews.

[262]  T. Vo‐Dinh,et al.  In vivo detection of SERS-encoded plasmonic nanostars in human skin grafts and live animal models , 2015, Analytical and Bioanalytical Chemistry.

[263]  Seung Yong Lee,et al.  Dispersion in the SERS enhancement with silver nanocube dimers. , 2010, ACS nano.

[264]  P. Albella,et al.  Plasmon-enhanced fluorescence and spectral modification in SHINEF , 2011 .

[265]  M. J. Weaver,et al.  Extending the metal interface generality of surface-enhanced Raman spectroscopy: Underpotential deposited layers of mercury, thallium, and lead on gold electrodes , 1987 .

[266]  Abraham Nitzan,et al.  Electromagnetic theory of enhanced Raman scattering by molecules adsorbed on rough surfaces , 1980 .

[267]  Zhongpin Zhang,et al.  Shell thickness-dependent Raman enhancement for rapid identification and detection of pesticide residues at fruit peels. , 2012, Analytical chemistry.

[268]  Harry A. Atwater,et al.  Low-Loss Plasmonic Metamaterials , 2011, Science.

[269]  T. S. West Analytical Chemistry , 1969, Nature.

[270]  Naomi J. Halas,et al.  Nanoengineering of optical resonances , 1998 .

[271]  J. Liao,et al.  Transformation of Ag Hexagonal Shape into Ag@Au Core-Shell Nanostructure in a Polymer-Mediated Polyol Process , 2008 .

[272]  P G Etchegoin,et al.  Enhancement factor distribution around a single surface-enhanced Raman scattering hot spot and its relation to single molecule detection. , 2006, The Journal of chemical physics.

[273]  R. V. Van Duyne,et al.  Localized surface plasmon resonance spectroscopy and sensing. , 2007, Annual review of physical chemistry.

[274]  Philippe Guyot-Sionnest,et al.  Mechanism of silver(I)-assisted growth of gold nanorods and bipyramids. , 2005, The journal of physical chemistry. B.

[275]  John R. Lombardi,et al.  Ab Initio Frequency Calculations of Pyridine Adsorbed on an Adatom Model of a SERS Active Site of a Silver Surface , 2003 .

[276]  B. Pettinger,et al.  Surface plasmon enhanced Raman scattering frequency and angular resonance of Raman scattered light from pyridine on Au, Ag and Cu electrodes , 1980 .

[277]  Gerhard Ertl,et al.  Surface Enhanced Raman Spectroscopy: Towards Single Molecule Spectroscopy , 2000 .

[278]  W. Smith,et al.  Control of enhanced Raman scattering using a DNA-based assembly process of dye-coded nanoparticles. , 2008, Nature nanotechnology.

[279]  Peidong Yang,et al.  Shape Control of Colloidal Metal Nanocrystals , 2008 .

[280]  De‐Yin Wu,et al.  Surface Catalytic Coupling Reaction of p-Mercaptoaniline Linking to Silver Nanostructures Responsible for Abnormal SERS Enhancement: A DFT Study , 2009 .

[281]  T. Montine,et al.  Multiplexed In-cell Immunoassay for Same-sample Protein Expression Profiling , 2015, Scientific Reports.

[282]  M. Kerker Electromagnetic model for surface-enhanced Raman scattering (SERS) on metal colloids , 1984 .

[283]  T. Furtak,et al.  Characterization of surface complexes in enhanced Raman scattering , 1984 .

[284]  S. Aștilean,et al.  Gold nanostructured films deposited on polystyrene colloidal crystal templates for surface-enhanced Raman spectroscopy , 2005 .

[285]  Sebastian Schlücker,et al.  Synthesis of bifunctional Au/Pt/Au Core/shell nanoraspberries for in situ SERS monitoring of platinum-catalyzed reactions. , 2011, Journal of the American Chemical Society.

[286]  A. Borisov,et al.  A classical treatment of optical tunneling in plasmonic gaps: extending the quantum corrected model to practical situations. , 2015, Faraday discussions.

[287]  Absar Ahmad,et al.  Rapid synthesis of Au, Ag, and bimetallic Au core-Ag shell nanoparticles using Neem (Azadirachta indica) leaf broth. , 2004, Journal of colloid and interface science.

[288]  H. Tenhu,et al.  Dissolution and aggregation of a poly(NIPA-block-sulfobetaine) copolymer in water and saline aqueous solutions , 2002 .

[289]  Derek A. Long,et al.  The Raman Effect , 2002 .

[290]  S. Tokonami,et al.  Novel Synthesis, Structure, and Oxidation Catalysis of Ag/Au Bimetallic Nanoparticles , 2010 .

[291]  Y. Gun’ko,et al.  From Ag Nanoprisms to Triangular AuAg Nanoboxes , 2010 .

[292]  Zhong-Qun Tian,et al.  Density Functional Study and Normal-Mode Analysis of the Bindings and Vibrational Frequency Shifts of the Pyridine-M (M = Cu, Ag, Au, Cu+, Ag+, Au+, and Pt) Complexes , 2002 .

[293]  L. Liz‐Marzán,et al.  Recent approaches toward creation of hot spots for SERS detection , 2014 .

[294]  M. J. Weaver,et al.  Extending surface-enhanced Raman spectroscopy to transition-metal surfaces: carbon monoxide adsorption and electrooxidation on platinum- and palladium-coated gold electrodes , 1987 .

[295]  R. Crooks,et al.  Dendrimer-encapsulated metal nanoparticles: synthesis, characterization, and applications to catalysis. , 2001, Accounts of chemical research.

[296]  M. Moskovits Surface-enhanced spectroscopy , 1985 .

[297]  Andreas Otto,et al.  Raman spectroscopy of pyridine adsorbed on single crystal copper electrodes , 1998 .

[298]  L. Jensen,et al.  A hybrid atomistic electrodynamics-quantum mechanical approach for simulating surface-enhanced Raman scattering. , 2014, Accounts of chemical research.

[299]  A. Kuzume,et al.  CO Oxidation on Pt(100): New Insights based on Combined Voltammetric, Microscopic and Spectroscopic Experiments , 2014 .

[300]  M. Ratner,et al.  Raman scattering in current-carrying molecular junctions. , 2008, The Journal of chemical physics.

[301]  J. West,et al.  Immunotargeted nanoshells for integrated cancer imaging and therapy. , 2005, Nano letters.

[302]  C. Murphy,et al.  Anisotropic metal nanoparticles: Synthesis, assembly, and optical applications. , 2005, The journal of physical chemistry. B.

[303]  B. Hwang,et al.  Direct in situ observation of Li2O evolution on Li-rich high-capacity cathode material, Li[Ni(x)Li((1-2x)/3)Mn((2-x)/3)]O2 (0 ≤ x ≤ 0.5). , 2014, Journal of the American Chemical Society.

[304]  Mato Knez,et al.  Synthesis and Surface Engineering of Complex Nanostructures by Atomic Layer Deposition , 2007 .

[305]  Hongxing Xu,et al.  Spectroscopy of Single Hemoglobin Molecules by Surface Enhanced Raman Scattering , 1999 .

[306]  J. Kong,et al.  Integrated Circuits Based on Bilayer MoS , 2012 .

[307]  Liangbao Yang,et al.  Fabrication of Au nanorod‐coated Fe3O4 microspheres as SERS substrate for pesticide analysis by near‐infrared excitation , 2015 .

[308]  George C Schatz,et al.  Plasmonics in the ultraviolet with the poor metals Al, Ga, In, Sn, Tl, Pb, and Bi. , 2013, Physical chemistry chemical physics : PCCP.

[309]  Jiyan Dai,et al.  In situ SERS monitoring of photocatalytic organic decomposition using recyclable TiO2-coated Ag nanowire arrays , 2014 .

[310]  George C Schatz,et al.  Localized surface plasmon resonance nanosensor: a high-resolution distance-dependence study using atomic layer deposition. , 2005, The journal of physical chemistry. B.

[311]  Zhuyuan Wang,et al.  Polyvinylpyrrolidone- (PVP-) coated silver aggregates for high performance surface-enhanced Raman scattering in living cells , 2009, Nanotechnology.

[312]  Claire M. Cobley,et al.  Shape-Controlled Synthesis of Silver Nanoparticles for Plasmonic and Sensing Applications , 2009 .

[313]  Ivano Alessandri,et al.  Recyclable SERS substrates based on Au-coated ZnO nanorods. , 2011, ACS applied materials & interfaces.

[314]  Mostafa A. El-Sayed,et al.  Preparation and Growth Mechanism of Gold Nanorods (NRs) Using Seed-Mediated Growth Method , 2003 .

[315]  Wei Shen,et al.  Reliable Quantitative SERS Analysis Facilitated by Core-Shell Nanoparticles with Embedded Internal Standards. , 2015, Angewandte Chemie.

[316]  N. Kim,et al.  Silver-particle-based surface-enhanced resonance Raman scattering spectroscopy for biomolecular sensing and recognition , 2007, Analytical and bioanalytical chemistry.

[317]  Yong Ding,et al.  Tailoring Au-core Pd-shell Pt-cluster nanoparticles for enhanced electrocatalytic activity , 2011 .

[318]  I. Chorkendorff,et al.  Quantifying the promotion of Cu catalysts by ZnO for methanol synthesis , 2016, Science.

[319]  Volker Deckert,et al.  Catalytic processes monitored at the nanoscale with tip-enhanced Raman spectroscopy. , 2012, Nature nanotechnology.

[320]  Y. Zhang,et al.  Facile synthesis of core–shell–satellite Ag/C/Ag nanocomposites using carbon nanodots as reductant and their SERS properties , 2013 .

[321]  M. O’Donnell,et al.  Multifunctional nanoparticles as coupled contrast agents. , 2010, Nature communications.

[322]  S. Paria,et al.  Core/shell nanoparticles: classes, properties, synthesis mechanisms, characterization, and applications. , 2012, Chemical reviews.

[323]  Prashant V. Kamat,et al.  Photophysical, photochemical and photocatalytic aspects of metal nanoparticles , 2002 .

[324]  J. Popp,et al.  Surface-enhanced Raman spectroscopy , 2009, Analytical and bioanalytical chemistry.

[325]  M. J. Weaver,et al.  Surface-enhanced Raman scattering on uniform platinum-group overlayers: preparation by redox replacement of underpotential-deposited metals on gold. , 2001, Analytical chemistry.

[326]  Jian-Feng Li,et al.  SERS and DFT study of water on metal cathodes of silver, gold and platinum nanoparticles. , 2010, Physical chemistry chemical physics : PCCP.

[327]  Bing Zhao,et al.  Seed-mediated growth of large, monodisperse core-shell gold-silver nanoparticles with Ag-like optical properties. , 2002, Chemical communications.

[328]  S. Nie,et al.  In vivo cancer targeting and imaging with semiconductor quantum dots , 2004, Nature Biotechnology.

[329]  Andreas Kornowski,et al.  Tuning size and sensing properties in colloidal gold nanostars. , 2010, Langmuir : the ACS journal of surfaces and colloids.

[330]  Jian-Feng Li,et al.  Shell‐Isolated Nanoparticle‐Enhanced Raman Spectroscopy at Single‐Crystal Electrode Surfaces , 2016 .

[331]  J. F. Arenas,et al.  The role of charge-transfer states of the metal-adsorbate complex in surface-enhanced Raman scattering , 2002 .

[332]  Julio Gómez-Herrero,et al.  2D materials: to graphene and beyond. , 2011, Nanoscale.

[333]  L. Fang,et al.  Synthesis and application of homogeneous Fe3O4 core/Au shell nanoparticles with strong SERS effect , 2016 .

[334]  Xianfan Xu,et al.  Phosphorene: an unexplored 2D semiconductor with a high hole mobility. , 2014, ACS nano.

[335]  C. A. Murray,et al.  Silver-Molecule Separation Dependence of Surface-Enhanced Raman Scattering , 1981 .

[336]  Jiajing Zhou,et al.  SERS-encoded nanogapped plasmonic nanoparticles: growth of metallic nanoshell by templating redox-active polymer brushes. , 2014, Journal of the American Chemical Society.

[337]  S. Xie,et al.  The shape evolution of gold seeds and gold@silver core–shell nanostructures , 2009, Nanotechnology.

[338]  R. V. Duyne,et al.  Nanosphere lithography: A materials general fabrication process for periodic particle array surfaces , 1995 .

[339]  R. Birke,et al.  Charge‐transfer theory of surface enhanced Raman spectroscopy: Herzberg–Teller contributions , 1986 .

[340]  A. Campion,et al.  Surface-enhanced Raman scattering , 1998 .

[341]  Duncan Graham,et al.  Molecularly-mediated assemblies of plasmonic nanoparticles for Surface-Enhanced Raman Spectroscopy applications. , 2012, Chemical Society reviews.

[342]  U. S. Dinish,et al.  Multiplex targeted in vivo cancer detection using sensitive near-infrared SERS nanotags , 2012 .

[343]  Z. Tian,et al.  Raman spectroscopy of adsorbates on thin film electrodes deposited on silver substrates , 1987 .

[344]  Jiaxing Huang,et al.  Two dimensional soft material: new faces of graphene oxide. , 2012, Accounts of chemical research.

[345]  F. Cavani,et al.  Key Aspects of Catalyst Design for the Selective Oxidation of Paraffins , 1996 .

[346]  K. Sasaki,et al.  Stabilization of Platinum Oxygen-Reduction Electrocatalysts Using Gold Clusters , 2007, Science.

[347]  Naomi J. Halas,et al.  Surface enhanced Raman scattering in the near infrared using metal nanoshell substrates , 1999 .

[348]  Di Wang,et al.  Selective and sensitive SERS sensor for detection of Hg2+ in environmental water base on rhodamine-bonded and amino group functionalized SiO2-coated Au–Ag core–shell nanorods , 2015 .

[349]  C. Mirkin,et al.  Nanoparticles with Raman spectroscopic fingerprints for DNA and RNA detection. , 2002, Science.

[350]  R. Aroca,et al.  Experimental confirmation of local field enhancement determining far-field measurements with shell-isolated silver nanoparticles. , 2012, Small.

[351]  Hongyu Chen,et al.  Engineering "hot" nanoparticles for surface-enhanced Raman scattering by embedding reporter molecules in metal layers. , 2012, Small.

[352]  A. van den Berg,et al.  Surface- and Tip-Enhanced Raman Spectroscopy in Catalysis , 2016, The journal of physical chemistry letters.

[353]  Bing Han,et al.  Pursuing shell-isolated nanoparticle-enhanced Raman spectroscopy (SHINERS) for concomitant detection of breast lesions and microcalcifications. , 2015, Nanoscale.

[354]  Yang Tian,et al.  Bifunctional Au-nanorod@Fe3O4 nanocomposites: synthesis, characterization, and their use as bioprobes , 2012, Journal of Nanoparticle Research.

[355]  M. Seery,et al.  A review on the visible light active titanium dioxide photocatalysts for environmental applications , 2012 .

[356]  Longhua Tang,et al.  Graphene-Based Materials in Electrochemistry , 2010 .

[357]  R. W. Christy,et al.  Optical Constants of the Noble Metals , 1972 .

[358]  G. Shi,et al.  Graphene based new energy materials , 2011 .

[359]  John E. Wessel,et al.  Surface-enhanced optical microscopy , 1985 .

[360]  Tamitake Itoh,et al.  Semiconductor quantum dots and metal nanoparticles: syntheses, optical properties, and biological applications , 2008, Analytical and bioanalytical chemistry.

[361]  Marcel Mayor,et al.  Redox-switching in a viologen-type adlayer: an electrochemical shell-isolated nanoparticle enhanced Raman spectroscopy study on Au(111)-(1×1) single crystal electrodes. , 2011, ACS nano.

[362]  Xiaohua Huang,et al.  Size- and Shape-Controlled Synthesis and Properties of Magnetic-Plasmonic Core-Shell Nanoparticles. , 2016, The journal of physical chemistry. C, Nanomaterials and interfaces.

[363]  S. Nie,et al.  Stimuli-responsive SERS nanoparticles: conformational control of plasmonic coupling and surface Raman enhancement. , 2009, Journal of the American Chemical Society.

[364]  S. Whitelam,et al.  Real-Time Imaging of Pt3Fe Nanorod Growth in Solution , 2012, Science.

[365]  A. Henglein,et al.  Photochemistry of semiconductor colloids. 17. Strong luminescing CdS and CdS‐Ag2S particles , 1987 .

[366]  Qiang Xu,et al.  Recent progress in synergistic catalysis over heterometallic nanoparticles , 2011 .

[367]  John Rick,et al.  In situ surface enhanced Raman spectroscopic studies of solid electrolyte interphase formation in lithium ion battery electrodes , 2014 .

[368]  Jian-Feng Li,et al.  In Situ Monitoring of Electrooxidation Processes at Gold Single Crystal Surfaces Using Shell-Isolated Nanoparticle-Enhanced Raman Spectroscopy. , 2015, Journal of the American Chemical Society.

[369]  John Bell,et al.  Predicting Single-Layer Technetium Dichalcogenides (TcX₂, X = S, Se) with Promising Applications in Photovoltaics and Photocatalysis. , 2016, ACS applied materials & interfaces.

[370]  Feng Lu,et al.  Nanoparticles as recyclable catalysts: the frontier between homogeneous and heterogeneous catalysis. , 2005, Angewandte Chemie.

[371]  M. J. Weaver,et al.  Adsorption and electrooxidation of carbon monoxide on rhodium- and ruthenium-coated gold electrodes as probed bu surface-enhanced Raman spectroscopy , 1988 .

[372]  Wenqi Zhu,et al.  Quantum mechanical limit to plasmonic enhancement as observed by surface-enhanced Raman scattering , 2014, Nature Communications.

[373]  Hideo Daimon,et al.  Multimetallic Au/FePt3 nanoparticles as highly durable electrocatalyst. , 2011, Nano letters.

[374]  Takamasa Sagara,et al.  Refractive index susceptibility of the plasmonic palladium nanoparticle: potential as the third plasmonic sensing material. , 2015, ACS nano.

[375]  Marc R. Knecht,et al.  Fabrication and Biofunctionalization of Carbon-Encapsulated Au Nanoparticles , 2009 .

[376]  Logan K. Ausman,et al.  On the importance of incorporating dipole reradiation in the modeling of surface enhanced Raman scattering from spheres. , 2009, The Journal of chemical physics.

[377]  Younan Xia,et al.  Shape‐Controlled Synthesis of Gold and Silver Nanoparticles. , 2003 .

[378]  Naomi J Halas,et al.  Engineered nanomaterials for biophotonics applications: improving sensing, imaging, and therapeutics. , 2003, Annual review of biomedical engineering.

[379]  J. Conde,et al.  Gold nanostars for efficient in vitro and in vivo real-time SERS detection and drug delivery via plasmonic-tunable Raman/FTIR imaging. , 2016, Biomaterials.

[380]  Shu Han Chen,et al.  Large scale synthesis of pinhole‐free shell‐isolated nanoparticles (SHINs) using improved atomic layer deposition (ALD) method for practical applications , 2015 .

[381]  Masayuki Futamata,et al.  ATR-SNOM-Raman spectroscopy , 2001 .

[382]  S. Vuković,et al.  Enhanced Raman scattering in a flowing plasma. , 1989, Optics letters.

[383]  Xing Ma,et al.  Graphene oxide wrapped gold nanoparticles for intracellular Raman imaging and drug delivery. , 2013, Journal of materials chemistry. B.

[384]  G. Schatz,et al.  The effect of randomly distributed surface bumps on local field enhancements in surface enhanced Raman spectroscopy , 1982 .

[385]  Richard P Van Duyne,et al.  Creating, characterizing, and controlling chemistry with SERS hot spots. , 2013, Physical chemistry chemical physics : PCCP.

[386]  Olga Lyandres,et al.  Rapid detection of an anthrax biomarker by surface-enhanced Raman spectroscopy. , 2005, Journal of the American Chemical Society.

[387]  M. Kiguchi,et al.  Surface enhanced Raman scattering of a single molecular junction. , 2015, Physical chemistry chemical physics : PCCP.

[388]  M. Osawa,et al.  Raman study of electrochemical reactions of a Pt electrode in H2SO4 solution , 1993 .

[389]  J. E. Pemberton,et al.  Raman Scattering from Monolayer Films of Thiophenol and 4-Mercaptopyridine at Pt Surfaces , 1992 .

[390]  Fang Bao,et al.  Synthesis of magnetic Fe2O3/Au core/shell nanoparticles for bioseparation and immunoassay based on surface-enhanced Raman spectroscopy. , 2009, Langmuir : the ACS journal of surfaces and colloids.

[391]  Jian-Feng Li,et al.  Expanding generality of surface-enhanced Raman spectroscopy with borrowing SERS activity strategy. , 2007, Chemical communications.

[392]  J. West,et al.  Near-infrared resonant nanoshells for combined optical imaging and photothermal cancer therapy. , 2007, Nano letters.

[393]  C. Shannon,et al.  Unenhanced Raman scattering as an in situ probe of the electrode-electrolyte interface: 4-cyanopyridine adsorbed on a rhodium electrode , 1988 .

[394]  P. Nordlander,et al.  Magnetic-plasmonic core-shell nanoparticles. , 2009, ACS nano.

[395]  Meng Zhang,et al.  Extending the shell-isolated nanoparticle-enhanced Raman spectroscopy approach to interfacial ionic liquids at single crystal electrode surfaces. , 2014, Chemical communications.

[396]  K. S. Krishnan,et al.  A New Type of Secondary Radiation , 1928, Nature.

[397]  Luis M Liz-Marzán,et al.  Shape control in gold nanoparticle synthesis. , 2008, Chemical Society reviews.

[398]  Zhong-Qun Tian,et al.  Adsorption and reaction at electrochemical interfaces as probed by surface-enhanced Raman spectroscopy. , 2004, Annual review of physical chemistry.

[399]  M. J. Weaver,et al.  The new interfacial ubiquity of surface-enhanced Raman spectroscopy. , 2000, Analytical chemistry.

[400]  R. Aroca,et al.  Surface-enhanced fluorescence with shell-isolated nanoparticles (SHINEF). , 2011, Angewandte Chemie.

[401]  Mengjing Hou,et al.  Pinhole Effect on the Melting Behavior of Ag@Al2O3 SERS Substrates , 2016, Nanoscale Research Letters.

[402]  S. Kawata,et al.  Metallized tip amplification of near-field Raman scattering , 2000 .

[403]  Xianzhi Fu,et al.  Synthesis of M@TiO2 (M = Au, Pd, Pt) Core–Shell Nanocomposites with Tunable Photoreactivity , 2011 .

[404]  Shouheng Sun,et al.  Nanocatalyst superior to Pt for oxygen reduction reactions: the case of core/shell Ag(Au)/CuPd nanoparticles. , 2014, Journal of the American Chemical Society.

[405]  M. Çulha,et al.  In Situ-Monitoring of Biofilm Formation by Using Surface-Enhanced Raman Scattering , 2013, Applied spectroscopy.

[406]  Sunghoon Kwon,et al.  Highly uniform and reproducible surface-enhanced Raman scattering from DNA-tailorable nanoparticles with 1-nm interior gap. , 2011, Nature nanotechnology.

[407]  David R. Smith,et al.  Controlled-reflectance surfaces with film-coupled colloidal nanoantennas , 2012, Nature.

[408]  B. Ren,et al.  Synthesis and Characterization of Au@Co and Au@Ni Core−Shell Nanoparticles and Their Applications in Surface-Enhanced Raman Spectroscopy , 2008 .

[409]  M. Kerker,et al.  Surface enhanced Raman scattering (SERS) of citrate ion adsorbed on colloidal silver. , 1980, Applied optics.

[410]  A. Campion,et al.  Unenhanced Raman scattering from pyridine chemisorbed on a stepped silver surface: Implications for proposed sers mechanisms , 1984 .

[411]  Shuangxi Xing,et al.  Facile route to achieve silver@polyaniline nanofibers , 2012 .

[412]  M. Stockman,et al.  Nanofocusing of optical energy in tapered plasmonic waveguides. , 2004, Physical review letters.

[413]  Arben Merkoçi,et al.  Nanomaterials for sensing and destroying pesticides. , 2012, Chemical reviews.

[414]  B. Ren,et al.  Synthesis of Au@Pd core-shell nanoparticles with controllable size and their application in surface-enhanced Raman spectroscopy , 2005 .

[415]  Vladimir M. Shalaev,et al.  Nonlinear optics of random metal-dielectric films , 1998, Nonlinear Optics '98. Materials, Fundamentals and Applications Topical Meeting (Cat. No.98CH36244).

[416]  G. Schatz,et al.  The role of surface roughness in surface enhanced raman spectroscopy (SERS): the importance of multiple plasmon resonances , 1981 .

[417]  J. Fendler,et al.  Dihexadecyl phosphate, vesicle-stabilized and in situ generated mixed CdS and ZnS semiconductor particles. Preparation and utilization for photosensitized charge separation and hydrogen generation , 1988 .

[418]  Lidong Li,et al.  Fabrication of Au@Pt multibranched nanoparticles and their application to in situ SERS monitoring. , 2014, ACS applied materials & interfaces.

[419]  Yongfang Li,et al.  Non-Fullerene Polymer Solar Cells Based on Alkylthio and Fluorine Substituted 2D-Conjugated Polymers Reach 9.5% Efficiency. , 2016, Journal of the American Chemical Society.

[420]  De‐Yin Wu,et al.  Activation of oxygen on gold and silver nanoparticles assisted by surface plasmon resonances. , 2014, Angewandte Chemie.

[421]  W. Ingler,et al.  Efficient Photochemical Water Splitting by a Chemically Modified n-TiO2 , 2002, Science.

[422]  D. L. Jeanmaire,et al.  Surface raman spectroelectrochemistry: Part I. Heterocyclic, aromatic, and aliphatic amines adsorbed on the anodized silver electrode , 1977 .

[423]  Xiaohua Huang,et al.  Cancer cell imaging and photothermal therapy in the near-infrared region by using gold nanorods. , 2006, Journal of the American Chemical Society.

[424]  Jianfang Wang,et al.  Bifunctional Au@Pt core-shell nanostructures for in situ monitoring of catalytic reactions by surface-enhanced Raman scattering spectroscopy. , 2014, Nanoscale.

[425]  Xin Xu,et al.  Revealing the molecular structure of single-molecule junctions in different conductance states by fishing-mode tip-enhanced Raman spectroscopy , 2011, Nature communications.

[426]  B. Rodríguez-González,et al.  Multishell bimetallic AuAg nanoparticles: synthesis, structure and optical properties , 2005 .

[427]  Y. Yamamoto,et al.  Surface enhanced Raman scattering (SERS) of chemisorbed species on various kinds of metals and semiconductors , 1983 .

[428]  Carsten Sönnichsen,et al.  A molecular ruler based on plasmon coupling of single gold and silver nanoparticles , 2005, Nature Biotechnology.

[429]  S. Lin,et al.  Theoretical differential Raman scattering cross-sections of totally-symmetric vibrational modes of free pyridine and pyridine-metal cluster complexes. , 2004, Spectrochimica acta. Part A, Molecular and biomolecular spectroscopy.

[430]  G. Schatz Theoretical Studies of Surface Enhanced Raman Scattering , 1984 .

[431]  Can Li,et al.  Selective conversion of aqueous glucose to value-added sugar aldose on TiO2-based photocatalysts , 2014 .

[432]  Lucas A Lane,et al.  SERS Nanoparticles in Medicine: From Label-Free Detection to Spectroscopic Tagging. , 2015, Chemical reviews.

[433]  Yuhua Shen,et al.  One-step synthesis of Ag@PANI nanocomposites and their application to detection of mercury , 2013 .

[434]  P. Prasad,et al.  Nanochemistry and Nanomedicine for Nanoparticle-based Diagnostics and Therapy. , 2016, Chemical reviews.

[435]  Vladimir M Shalaev,et al.  The Case for Plasmonics , 2010, Science.

[436]  Francesca Casadio,et al.  Ad-hoc surface-enhanced Raman spectroscopy methodologies for the detection of artist dyestuffs: thin layer chromatography-surface enhanced Raman spectroscopy and in situ on the fiber analysis. , 2009, Analytical chemistry.

[437]  Kristin L. Wustholz,et al.  Surface-enhanced Raman spectroscopy of dyes: from single molecules to the artists' canvas. , 2009, Physical chemistry chemical physics : PCCP.

[438]  Masayuki Nogami,et al.  Preparation of Au–Ag, Ag–Au core–shell bimetallic nanoparticles for surface-enhanced Raman scattering , 2008 .

[439]  Richard L. McCreery,et al.  Raman Spectroscopy for Chemical Analysis , 2000 .

[440]  N. Halas,et al.  Tailoring Plasmonic Substrates for Surface Enhanced Spectroscopies , 2008 .

[441]  Joseph M. McLellan,et al.  Surface-enhanced Raman scattering of 4-mercaptopyridine on thin films of nanoscale Pd cubes, boxes, and cages , 2006 .

[442]  M. Stevens,et al.  Plasmonic Nanomaterials for Biodiagnostics , 2014 .

[443]  Hui Huang,et al.  Metal‐Free Efficient Photocatalyst for Stable Visible Water Splitting via a Two‐Electron Pathway. , 2015 .

[444]  B. Ren,et al.  Surface-enhanced Raman scattering from bare Fe electrode surfaces , 2000 .

[445]  J. Liu,et al.  Core–Shell Nanostructured Au@NimPt2 Electrocatalysts with Enhanced Activity and Durability for Oxygen Reduction Reaction , 2016 .

[446]  Lasse Jensen,et al.  Vibronic coupling simulations for linear and nonlinear optical processes: theory. , 2012, The Journal of chemical physics.

[447]  Dong Qin,et al.  Bifunctional Ag@Pd-Ag Nanocubes for Highly Sensitive Monitoring of Catalytic Reactions by Surface-Enhanced Raman Spectroscopy. , 2015, Journal of the American Chemical Society.

[448]  Ken-ichi Yoshida,et al.  Quantitative evaluation of electromagnetic enhancement in surface-enhanced resonance Raman scattering from plasmonic properties and morphologies of individual Ag nanostructures , 2010 .

[449]  D. Weitz,et al.  The enhancement of Raman scattering, resonance Raman scattering, and fluorescence from molecules adsorbed on a rough silver surface , 1983 .

[450]  Lixin Xia,et al.  Preparation and characterization of an ultrathin carbon shell coating a silver core for shell-isolated nanoparticle-enhanced Raman spectroscopy. , 2011, Chemical communications.

[451]  Richard K. Chang,et al.  Surface-Enhanced Electric Intensities on Large Silver Spheroids , 1983 .

[452]  P. Kamat,et al.  Know thy nano neighbor. Plasmonic versus electron charging effects of metal nanoparticles in dye-sensitized solar cells. , 2012, ACS nano.