Variational sums and power variation: a unifying approach to model selection and estimation in semimartingale models

In the framework of general semimartingale models we provide limit theorems for variational sums including the p-th power variation, i.e. the sum of p-th absolute powers of increments of a process. This gives new insight in the use of quadratic and realised power variation as an estimate for the integrated volatility in finance. It also provides a criterion to decide from high frequency data, whether a jump component should be included in the model. Furthermore, results on the asymptotic behaviour of integrals with respect to Levy processes, estimates for integrals with respect to Levy measures and non-parametric estimation for Levy processes will be derived and viewed in the framework of variational sums.

[1]  S. Berman Sign-invariant random variables and stochastic processes with sign-invariant increments , 1965 .

[2]  Expansion of transition distributions of Lévy processes in small time , 2002 .

[3]  E. Ghysels,et al.  Série Scientifique Scientific Series Predicting Volatility: Getting the Most out of Return Data Sampled at Different Frequencies , 2022 .

[4]  T. Bollerslev,et al.  Estimating Stochastic Volatility Diffusion Using Conditional Moments of Integrated Volatility , 2001 .

[5]  H. Rubin,et al.  Estimating the Parameters of a Differential Process , 1959 .

[6]  P. Brockwell,et al.  Non‐Parametric Estimation for Non‐Decreasing Lévy Processes , 1982 .

[7]  N. Shephard,et al.  Power and bipower variation with stochastic volatility and jumps , 2003 .

[8]  F. Diebold,et al.  The distribution of realized stock return volatility , 2001 .

[9]  F. Diebold,et al.  The Distribution of Realized Exchange Rate Volatility , 2000 .

[10]  J. Mason,et al.  Variational sums for additive processes , 1976 .

[11]  F. Diebold,et al.  The Distribution of Exchange Rate Volatility , 1999 .

[12]  Nelson Areal,et al.  The Realized Volatility of Ftse-100 Futures Prices , 2000 .

[13]  D. Lépingle,et al.  La variation d'ordre p des semi-martingales , 1976 .

[14]  K. West,et al.  The Predictive Ability of Several Models of Exchange Rate Volatility , 1994 .

[15]  Clive W. J. Granger,et al.  Modelling the Absolute Returns of Different Stock Indices: Exploring the Forecastability of an Alternative Measure of Risk , 1999 .

[16]  A. Shiryaev Essentials of stochastic finance , 1999 .

[17]  Telling from Discrete Data Whether the Underlying Continuous-Time Model is a Diffusion , 2002 .

[18]  C. Granger,et al.  Some Properties of Absolute Return, An Alternative Measure of Risk , 1995 .

[19]  N. Shephard,et al.  Econometric analysis of realised volatility and its use in estimating stochastic volatility models , 2000 .

[20]  N. Shephard,et al.  Realised power variation and stochastic volatility models , 2003 .

[21]  Etienne Becker,et al.  Theoremes limites pour des processus discretises , 1998 .

[22]  T. Bollerslev,et al.  Intraday periodicity and volatility persistence in financial markets , 1997 .

[23]  John W. Galbraith,et al.  Properties of Estimates of Daily GARCH Parameters Based on Intra-Day Observations , 2001 .

[24]  Philippe Jorion Predicting Volatility in the Foreign Exchange Market , 1995 .

[25]  G. Mason,et al.  Beyond Merton’s Utopia: Effects of Non-normality and Dependence on the Precision of Variance Estimates Using High-frequency Financial Data , 2000 .

[26]  N. Shephard,et al.  Econometric analysis of realized volatility and its use in estimating stochastic volatility models , 2002 .

[27]  N. Shephard,et al.  Non‐Gaussian Ornstein–Uhlenbeck‐based models and some of their uses in financial economics , 2001 .

[28]  T. Bollerslev,et al.  ANSWERING THE SKEPTICS: YES, STANDARD VOLATILITY MODELS DO PROVIDE ACCURATE FORECASTS* , 1998 .

[29]  Eric Ghysels,et al.  Série Scientifique Scientific Series the Impact of Sampling Frequency and Volatility Estimators on Change-point Tests the Impact of Sampling Frequency and Volatility Estimators on Change-point Tests* , 2022 .

[30]  Neil Shephard,et al.  Power variation and stochastic volatility: a review and some new results , 2004, Journal of Applied Probability.

[31]  C. Granger,et al.  A long memory property of stock market returns and a new model , 1993 .

[32]  Ruey S. Tsay,et al.  Nonlinear Time-Series Analysis of Stock Volatilities , 1992 .