Aberrations of emission cathodes: Nanometer diameter field-emission electron sources

The electron optical properties of nanometer sized field‐emission cathodes are examined for suitability as electron sources for low‐voltage scanning electron microscopy, low‐voltage transmission point projection microscopy, and low‐voltage transmission and reflection electron holography. First‐order electron optical properties, aperture and chromatic aberrations, and source coherence are computed using an all‐orders numerical method, and compared with analytically computed properties where possible. The electron optical properties of planar emitters, conventional field‐emission tips, and new nanotip structures are compared in the absence of space‐charge effects. It is found that the spherical and chromatic aberrations of nanotips are dominated by their base structures and that beams produced by nanotips can be considered as totally coherent.

[1]  Li Zhou,et al.  Electron optical properties and aberrations of a miniaturized electron beam system , 1992 .

[2]  A. Baró,et al.  Preparation of STM W tips and characterization by FEM, TEM and SEM , 1992 .

[3]  Wierzbicki,et al.  Atomic resolution in lensless low-energy electron holography. , 1991, Physical review letters.

[4]  W. Skoczylas,et al.  Design and performance of a high-resolution photoelectron microscope. , 1991, Ultramicroscopy.

[5]  G. Pozzi,et al.  Spatial coherence of anisotropic and astigmatic sources in interference electron microscopy and holography , 1990 .

[6]  De Raedt,et al.  Electron emission from small sources , 1989 .

[7]  Lang,et al.  Theory of a single-atom point source for electrons. , 1989, Physical review letters.

[8]  H. Rohrer,et al.  Coherent electron beams and sources , 1989 .

[9]  R. Miranda,et al.  Properties of potassium adsorbed on Si(100)2×1 , 1989 .

[10]  G. Rempfer,et al.  The resolution of photoelectron microscopes with UV, X-ray, and synchrotron excitation sources. , 1989, Ultramicroscopy.

[11]  H. Rohrer,et al.  Coherent electron emission from point sources , 1988 .

[12]  Hans-Werner Fink,et al.  Point source for ions and electrons , 1988 .

[13]  Vu Thien Binh,et al.  Characterization of microtips for scanning tunneling microscopy , 1988 .

[14]  M. Silverman Gravitationally induced quantum interference effects on fermion antibunching , 1987 .

[15]  M. Silverman On the feasibility of observing electron antibunching in a field-emission beam , 1987 .

[16]  M. Silverman New quantum effect of confined magnetic flux on electrons , 1986 .

[17]  F. Barreiro,et al.  An O(αs)2 calculation of energy-energy correlation in e+e− annihilation and comparison with experimental data , 1982 .

[18]  H. A. Hoof A new method for numerical calculation of potentials and trajectories in systems of cylindrical symmetry , 1980 .

[19]  A. Melmed,et al.  Field-ion transmission microscopy , 1979 .

[20]  E. W. Plummer,et al.  Field Emission Energy Distribution (FEED) , 1973 .

[21]  A. Crewe The current state of high resolution scanning electron microscopy , 1970, Quarterly Reviews of Biophysics.

[22]  D. R. Cruise A Numerical Method for the Determination of an Electric Field about a Complicated Boundary , 1963 .

[23]  R. Gomer,et al.  Field Emission and Field Ionization , 1961 .

[24]  H. H. Hopkins Applications of coherence theory in microscopy and interferometry , 1957 .

[25]  M. De Handbuch der Physik , 1957 .

[26]  J. M. Cowley,et al.  Fourier Images: III - Finite Sources , 1957 .

[27]  M. Macnaughton The Focal Properties and Spherical Aberration Constants of Aperture Electron Lenses , 1952 .

[28]  G. A. Morton,et al.  Point Projector Electron Microscope , 1939 .

[29]  E. Ruska,et al.  Zur Fokussierbarkeit von Kathodenstrahlbündeln großer Ausgangsquerschnitte , 1933 .

[30]  N. Garcia,et al.  Scanning Tunneling Microscopy and Related Methods , 1990 .

[31]  H. Liebl The Image Aberration Caused by the Acceleration Field Between Concentric Spherical Electrodes , 1989 .

[32]  H. Liebl On the Image Aberration of the Uniform Acceleration Field of an Emission Lens , 1988 .

[33]  G. Pozzi Theoretical considerations on the spatial coherence in field emission electron microscopes , 1987 .

[34]  H. Liebl Transfer Matrix for the Trajectories of Charged Particles Between Concentric, Spherical, Equipotential Surfaces , 1987 .

[35]  E. Bauer The resolution of the low energy electron reflection microscope , 1985 .

[36]  Carlos Alberto Brebbia,et al.  The Boundary Element Method for Engineers , 1978 .

[37]  L. Swanson,et al.  Recent Advances in Field Electron Microscopy of Metals , 1973 .

[38]  H. A. Luther,et al.  Applied numerical methods , 1969 .