Enhancement of the piezoelectric coefficient in hexagonal MgxZn1-xO films at lower Mg compositions

Abstract Wurtzite structure materials such as ZnO exhibits piezoelectric and semiconducting properties with piezoelectric coefficient as a dominant physical characteristic. We investigate the dependence of the piezoelectric coefficient on the Mg content in the Mg x Zn 1-x O thin films deposited on Si (111) substrate by radio frequency magnetron sputtering. The deposition temperature is fixed at 250 °C and all the films have near equal thickness (380 nm). All Mg x Zn 1-x O films show high crystallinity with strong preferential orientation along [0001] growth direction. Moreover, the diffraction peaks shift toward higher angles which confirms the substitution of the smaller ionic radius of magnesium at zinc site. The piezoelectric coefficient of Mg x Zn 1-x O films as measured by piezoelectric force microscopy, exhibits the maximum (54.1 pm/V) at an intermediate Mg concentration (x = 0.28), which is largely improved as compared to ZnO. The Mg x Zn 1-x O films hold great promise to be applied in piezoelectric nanogenerator (NG).

[1]  Y Q Chen,et al.  The fabrication of vanadium-doped ZnO piezoelectric nanofiber by electrospinning , 2010, Nanotechnology.

[2]  Akira Ohtomo,et al.  MgxZn1−xO as a II–VI widegap semiconductor alloy , 1998 .

[3]  K. Lee,et al.  Depletion width engineering via surface modification for high performance semiconducting piezoelectric nanogenerators , 2014 .

[4]  R. Grigorovici,et al.  Optical Properties and Electronic Structure of Amorphous Germanium , 1966, 1966.

[5]  Davinder Kaur,et al.  Effect of Mg content on structural, electrical and optical properties of Zn1−xMgxO nanocomposite thin films , 2009 .

[6]  J. Sirohi,et al.  Fundamental Understanding of Piezoelectric Strain Sensors , 1999, Smart Structures.

[7]  B. Kumar,et al.  Enhanced ferroelectric, dielectric and optical behavior in Li-doped ZnO nanorods , 2011 .

[8]  Yuchao Yang,et al.  Enhanced electromechanical response of Fe-doped ZnO films by modulating the chemical state and ionic size of the Fe dopant , 2010 .

[9]  Yu Qiu,et al.  Fabrication of flexible nanogenerator with enhanced performance based on p-CuO/n-ZnO heterostructure , 2016, Journal of Materials Science: Materials in Electronics.

[10]  Ultraviolet photodetectors based on MgZnO thin film grown by RF magnetron sputtering , 2016 .

[11]  Toru Aoki,et al.  ZnO diode fabricated by excimer-laser doping , 2000 .

[12]  Norihiko Tamaki,et al.  Ferroelectric properties in piezoelectric semiconductor Zn1-xMxO (M=Li, Mg) , 1997 .

[13]  Cheng-Shong Hong,et al.  The influence of Mg doped ZnO thin films on the properties of Love wave sensors , 2008 .

[14]  Dongmei Li,et al.  The influence of different doping elements on microstructure, piezoelectric coefficient and resistivity of sputtered ZnO film , 2006 .

[15]  Yan Zhang,et al.  Surface free-carrier screening effect on the output of a ZnO nanowire nanogenerator and its potential as a self-powered active gas sensor , 2013, Nanotechnology.

[16]  S. Mohammad Nejad,et al.  Recent advances in ultraviolet photodetectors , 2015 .

[17]  H. Morkoç,et al.  A COMPREHENSIVE REVIEW OF ZNO MATERIALS AND DEVICES , 2005 .

[18]  Ryan O'Hayre,et al.  Enhanced Electron Mobility Due to Dopant‐Defect Pairing in Conductive ZnMgO , 2014 .

[19]  G. Saraf Studies of in-plane anisotropic physical properties in a-plane MgxZn1-xO , 2008 .

[20]  Nai‐Jen Ku,et al.  Optimization of the Output Efficiency of GaN Nanowire Piezoelectric Nanogenerators by Tuning the Free Carrier Concentration , 2014 .

[21]  H. Zeng,et al.  The impact of Mg content on the structural, electrical and optical properties of MgZnO alloys: A first principles study , 2015 .

[22]  Q. Guo,et al.  Energy band bowing parameter in MgZnO alloys , 2015 .

[23]  T. Riekkinen,et al.  Thin Film Piezomaterials for Bulk Acoustic Wave Technology , 2015 .

[24]  Zhong Lin Wang Nanogenerators for Self-powered Devices and Systems , 2011 .

[25]  Posternak,et al.  Ab initio study of piezoelectricity and spontaneous polarization in ZnO. , 1994, Physical review. B, Condensed matter.

[26]  L. Vegard,et al.  Die Konstitution der Mischkristalle und die Raumfüllung der Atome , 1921 .

[27]  Binay Kumar,et al.  Eu-doped ZnO nanoparticles for dielectric, ferroelectric and piezoelectric applications , 2016 .

[28]  E. Segnit,et al.  The System MgO‐ZnO‐SiO2 , 1965 .

[29]  Rashid Ahmed,et al.  Structural, electronic and thermodynamic properties of wide band gap MgxZn1 − xO alloy , 2007 .

[30]  S. Bass,et al.  Constituent quarks and g1 , 1999, hep-ph/9902280.

[31]  Mengyan Shen,et al.  Optically pumped lasing of ZnO at room temperature , 1991 .

[32]  R. D. Shannon Revised effective ionic radii and systematic studies of interatomic distances in halides and chalcogenides , 1976 .

[33]  Dhananjay,et al.  Dielectric properties of c-axis oriented Zn1−xMgxO thin films grown by multimagnetron sputtering , 2006 .