Virtual element methods for the three-field formulation of time-dependent linear poroelasticity

A virtual element discretisation for the numerical approximation of the three-field formulation of linear poroelasticity introduced in R. Oyarzúa and R. Ruiz-Baier, ( SIAM J. Numer. Anal. 54 2951–2973, 2016 ) is proposed. The treatment is extended to include also the transient case. Appropriate poroelasticity projector operators are introduced and they assist in deriving energy bounds for the time-dependent discrete problem. Under standard assumptions on the computational domain, optimal a priori error estimates are established. These estimates are valid independently of the values assumed by the dilation modulus and the specific storage coefficient, implying that the formulation is locking-free. Furthermore, the accuracy of the method is verified numerically through a set of computational tests.

[1]  Petr N. Vabishchevich,et al.  Finite Difference Schemes for Poro-elastic ProblemS , 2002 .

[2]  Jan M. Nordbotten,et al.  Robust fixed stress splitting for Biot's equations in heterogeneous media , 2017, Appl. Math. Lett..

[3]  Jeonghun J. Lee,et al.  Parameter-Robust Discretization and Preconditioning of Biot's Consolidation Model , 2015, SIAM J. Sci. Comput..

[4]  A. Naumovich On Finite Volume Discretization of the Three-dimensional Biot Poroelasticity System in Multilayer Domains , 2006 .

[5]  Vidar Thomée,et al.  Asymptotic behavior of semidiscrete finite-element approximations of Biot's consolidation problem , 1996 .

[6]  Elyes Ahmed,et al.  Adaptive asynchronous time-stepping, stopping criteria, and a posteriori error estimates for fixed-stress iterative schemes for coupled poromechanics problems , 2019, J. Comput. Appl. Math..

[7]  Felipe Lepe,et al.  A Virtual Element Method for the Steklov Eigenvalue Problem Allowing Small Edges , 2015, Journal of Scientific Computing.

[8]  Ahmed Alsaedi,et al.  Equivalent projectors for virtual element methods , 2013, Comput. Math. Appl..

[9]  Bin Wang,et al.  Numerical convergence study of iterative coupling for coupled flow and geomechanics , 2012, Computational Geosciences.

[10]  Daniele Boffi,et al.  A Nonconforming High-Order Method for the Biot Problem on General Meshes , 2015, SIAM J. Sci. Comput..

[11]  Ilaria Perugia,et al.  A Plane Wave Virtual Element Method for the Helmholtz Problem , 2015, 1505.04965.

[12]  Miss A.O. Penney (b) , 1974, The New Yale Book of Quotations.

[13]  Jun Tan,et al.  Error analysis of primal discontinuous Galerkin methods for a mixed formulation of the Biot equations , 2017, Comput. Math. Appl..

[14]  Alessandro Russo,et al.  Mixed Virtual Element Methods for general second order elliptic problems on polygonal meshes , 2014, 1506.07328.

[15]  Jeonghun J. Lee Robust three-field finite element methods for Biot’s consolidation model in poroelasticity , 2018 .

[16]  Simone Scacchi,et al.  A C1 Virtual Element Method for the Cahn-Hilliard Equation with Polygonal Meshes , 2015, SIAM J. Numer. Anal..

[17]  R. Showalter Diffusion in Poro-Elastic Media , 2000 .

[18]  Lourenço Beirão da Veiga,et al.  Virtual Elements for Linear Elasticity Problems , 2013, SIAM J. Numer. Anal..

[19]  Lourenço Beirão da Veiga,et al.  Virtual element methods for parabolic problems on polygonal meshes , 2015 .

[20]  David Mora,et al.  A priori and a posteriori error estimates for a virtual element spectral analysis for the elasticity equations , 2017, IMA Journal of Numerical Analysis.

[21]  Craig T. Simmons,et al.  Finite volume coupling strategies for the solution of a Biot consolidation model , 2014 .

[22]  C. Rodrigo,et al.  Numerical stabilization of Biot's consolidation model by a perturbation on the flow equation , 2008 .

[23]  F. Brezzi,et al.  Basic principles of Virtual Element Methods , 2013 .

[24]  J. Kraus,et al.  Parameter-robust stability of classical three-field formulation of Biot's consolidation model , 2017, 1706.00724.

[25]  Johannes Kraus,et al.  Conservative discretizations and parameter‐robust preconditioners for Biot and multiple‐network flux‐based poroelasticity models , 2018, Numer. Linear Algebra Appl..

[26]  Ludmil T. Zikatanov,et al.  A nonconforming finite element method for the Biot's consolidation model in poroelasticity , 2016, J. Comput. Appl. Math..

[27]  Lourenço Beirão da Veiga,et al.  Virtual elements for a shear-deflection formulation of Reissner-Mindlin plates , 2017, Math. Comput..

[28]  Ricardo Oyarzúa,et al.  Conservative discontinuous finite volume and mixed schemes for a new four-field formulation in poroelasticity , 2020 .

[29]  Son-Young Yi,et al.  A Study of Two Modes of Locking in Poroelasticity , 2017, SIAM J. Numer. Anal..

[30]  Paola Causin,et al.  A poroelastic mixture model of mechanobiological processes in biomass growth: theory and application to tissue engineering , 2017, Meccanica.

[31]  M. Fortin,et al.  Mixed Finite Element Methods and Applications , 2013 .

[32]  O. Ladyženskaja Linear and Quasilinear Equations of Parabolic Type , 1968 .

[33]  Susanne C. Brenner,et al.  Some Estimates for Virtual Element Methods , 2017, Comput. Methods Appl. Math..

[34]  L. R. Scott,et al.  The Mathematical Theory of Finite Element Methods , 1994 .

[35]  Son-Young Yi A coupling of nonconforming and mixed finite element methods for Biot's consolidation model , 2013 .

[36]  Feleke Arega,et al.  Coupled consolidation and contaminant transport model for simulating migration of contaminants through the sediment and a cap , 2008 .

[37]  Marie E. Rognes,et al.  A Mixed Finite Element Method for Nearly Incompressible Multiple-Network Poroelasticity , 2018, SIAM J. Sci. Comput..

[38]  Jan M. Nordbotten,et al.  Robust iterative schemes for non-linear poromechanics , 2017, Computational Geosciences.

[39]  G. Charras,et al.  The cytoplasm of living cells behaves as a poroelastic material , 2013, Nature materials.

[40]  G. Vacca An H1-conforming virtual element for Darcy and Brinkman equations , 2017 .

[41]  Felipe Lepe,et al.  A Virtual Element Method for the Steklov Eigenvalue Problem Allowing Small Edges , 2021, J. Sci. Comput..

[42]  Gerard A Ateshian,et al.  Modeling of neutral solute transport in a dynamically loaded porous permeable gel: implications for articular cartilage biosynthesis and tissue engineering. , 2003, Journal of biomechanical engineering.

[43]  Petr N. Vabishchevich,et al.  Splitting scheme for poroelasticity and thermoelasticity problems , 2013, FDM.

[44]  Mostafa Bendahmane,et al.  A virtual element method for a nonlocal FitzHugh–Nagumo model of cardiac electrophysiology , 2018, IMA Journal of Numerical Analysis.

[45]  M. Wheeler,et al.  DOMAIN DECOMPOSITION FOR POROELASTICITY AND ELASTICITY WITH DG JUMPS AND MORTARS , 2011 .

[46]  Frédéric Nataf,et al.  A fully coupled scheme using virtual element method and finite volume for poroelasticity , 2019, Computational Geosciences.

[47]  Gianmarco Manzini,et al.  Conforming and nonconforming virtual element methods for elliptic problems , 2015, 1507.03543.

[48]  Gabriel N. Gatica,et al.  A mixed virtual element method for the pseudostress–velocity formulation of the Stokes problem , 2017 .

[49]  Lourenço Beirão da Veiga,et al.  A Stream Virtual Element Formulation of the Stokes Problem on Polygonal Meshes , 2014, SIAM J. Numer. Anal..

[50]  Ricardo Ruiz-Baier,et al.  Rotation-Based Mixed Formulations for an Elasticity-Poroelasticity Interface Problem , 2020, SIAM J. Sci. Comput..

[51]  L. Beirao da Veiga,et al.  Divergence free Virtual Elements for the Stokes problem on polygonal meshes , 2015, 1510.01655.

[52]  Lourenço Beirão da Veiga,et al.  A mimetic discretization of the Reissner–Mindlin plate bending problem , 2011, Numerische Mathematik.

[53]  Emmanuil H. Georgoulis,et al.  A posteriori error estimates for the virtual element method , 2016, Numerische Mathematik.

[54]  David W. Smith,et al.  Solute transport through a deforming porous medium , 2002 .

[55]  Andro Mikelić,et al.  Convergence of iterative coupling for coupled flow and geomechanics , 2013, Computational Geosciences.

[56]  Ricardo Ruiz-Baier,et al.  Locking-Free Finite Element Methods for Poroelasticity , 2016, SIAM J. Numer. Anal..

[57]  Guosheng Fu,et al.  A high-order HDG method for the Biot's consolidation model , 2018, Comput. Math. Appl..

[58]  Vivette Girault,et al.  Finite Element Methods for Navier-Stokes Equations - Theory and Algorithms , 1986, Springer Series in Computational Mathematics.

[59]  David Kay,et al.  Stabilized Lowest-Order Finite Element Approximation for Linear Three-Field Poroelasticity , 2015, SIAM J. Sci. Comput..