Virtual element methods for the three-field formulation of time-dependent linear poroelasticity
暂无分享,去创建一个
Raimund Bürger | Ricardo Ruiz-Baier | Nitesh Verma | Sarvesh Kumar | David Mora | R. Bürger | R. Ruiz-Baier | D. Mora | Sarvesh Kumar | Nitesh Verma
[1] Petr N. Vabishchevich,et al. Finite Difference Schemes for Poro-elastic ProblemS , 2002 .
[2] Jan M. Nordbotten,et al. Robust fixed stress splitting for Biot's equations in heterogeneous media , 2017, Appl. Math. Lett..
[3] Jeonghun J. Lee,et al. Parameter-Robust Discretization and Preconditioning of Biot's Consolidation Model , 2015, SIAM J. Sci. Comput..
[4] A. Naumovich. On Finite Volume Discretization of the Three-dimensional Biot Poroelasticity System in Multilayer Domains , 2006 .
[5] Vidar Thomée,et al. Asymptotic behavior of semidiscrete finite-element approximations of Biot's consolidation problem , 1996 .
[6] Elyes Ahmed,et al. Adaptive asynchronous time-stepping, stopping criteria, and a posteriori error estimates for fixed-stress iterative schemes for coupled poromechanics problems , 2019, J. Comput. Appl. Math..
[7] Felipe Lepe,et al. A Virtual Element Method for the Steklov Eigenvalue Problem Allowing Small Edges , 2015, Journal of Scientific Computing.
[8] Ahmed Alsaedi,et al. Equivalent projectors for virtual element methods , 2013, Comput. Math. Appl..
[9] Bin Wang,et al. Numerical convergence study of iterative coupling for coupled flow and geomechanics , 2012, Computational Geosciences.
[10] Daniele Boffi,et al. A Nonconforming High-Order Method for the Biot Problem on General Meshes , 2015, SIAM J. Sci. Comput..
[11] Ilaria Perugia,et al. A Plane Wave Virtual Element Method for the Helmholtz Problem , 2015, 1505.04965.
[12] Miss A.O. Penney. (b) , 1974, The New Yale Book of Quotations.
[13] Jun Tan,et al. Error analysis of primal discontinuous Galerkin methods for a mixed formulation of the Biot equations , 2017, Comput. Math. Appl..
[14] Alessandro Russo,et al. Mixed Virtual Element Methods for general second order elliptic problems on polygonal meshes , 2014, 1506.07328.
[15] Jeonghun J. Lee. Robust three-field finite element methods for Biot’s consolidation model in poroelasticity , 2018 .
[16] Simone Scacchi,et al. A C1 Virtual Element Method for the Cahn-Hilliard Equation with Polygonal Meshes , 2015, SIAM J. Numer. Anal..
[17] R. Showalter. Diffusion in Poro-Elastic Media , 2000 .
[18] Lourenço Beirão da Veiga,et al. Virtual Elements for Linear Elasticity Problems , 2013, SIAM J. Numer. Anal..
[19] Lourenço Beirão da Veiga,et al. Virtual element methods for parabolic problems on polygonal meshes , 2015 .
[20] David Mora,et al. A priori and a posteriori error estimates for a virtual element spectral analysis for the elasticity equations , 2017, IMA Journal of Numerical Analysis.
[21] Craig T. Simmons,et al. Finite volume coupling strategies for the solution of a Biot consolidation model , 2014 .
[22] C. Rodrigo,et al. Numerical stabilization of Biot's consolidation model by a perturbation on the flow equation , 2008 .
[23] F. Brezzi,et al. Basic principles of Virtual Element Methods , 2013 .
[24] J. Kraus,et al. Parameter-robust stability of classical three-field formulation of Biot's consolidation model , 2017, 1706.00724.
[25] Johannes Kraus,et al. Conservative discretizations and parameter‐robust preconditioners for Biot and multiple‐network flux‐based poroelasticity models , 2018, Numer. Linear Algebra Appl..
[26] Ludmil T. Zikatanov,et al. A nonconforming finite element method for the Biot's consolidation model in poroelasticity , 2016, J. Comput. Appl. Math..
[27] Lourenço Beirão da Veiga,et al. Virtual elements for a shear-deflection formulation of Reissner-Mindlin plates , 2017, Math. Comput..
[28] Ricardo Oyarzúa,et al. Conservative discontinuous finite volume and mixed schemes for a new four-field formulation in poroelasticity , 2020 .
[29] Son-Young Yi,et al. A Study of Two Modes of Locking in Poroelasticity , 2017, SIAM J. Numer. Anal..
[30] Paola Causin,et al. A poroelastic mixture model of mechanobiological processes in biomass growth: theory and application to tissue engineering , 2017, Meccanica.
[31] M. Fortin,et al. Mixed Finite Element Methods and Applications , 2013 .
[32] O. Ladyženskaja. Linear and Quasilinear Equations of Parabolic Type , 1968 .
[33] Susanne C. Brenner,et al. Some Estimates for Virtual Element Methods , 2017, Comput. Methods Appl. Math..
[34] L. R. Scott,et al. The Mathematical Theory of Finite Element Methods , 1994 .
[35] Son-Young Yi. A coupling of nonconforming and mixed finite element methods for Biot's consolidation model , 2013 .
[36] Feleke Arega,et al. Coupled consolidation and contaminant transport model for simulating migration of contaminants through the sediment and a cap , 2008 .
[37] Marie E. Rognes,et al. A Mixed Finite Element Method for Nearly Incompressible Multiple-Network Poroelasticity , 2018, SIAM J. Sci. Comput..
[38] Jan M. Nordbotten,et al. Robust iterative schemes for non-linear poromechanics , 2017, Computational Geosciences.
[39] G. Charras,et al. The cytoplasm of living cells behaves as a poroelastic material , 2013, Nature materials.
[40] G. Vacca. An H1-conforming virtual element for Darcy and Brinkman equations , 2017 .
[41] Felipe Lepe,et al. A Virtual Element Method for the Steklov Eigenvalue Problem Allowing Small Edges , 2021, J. Sci. Comput..
[42] Gerard A Ateshian,et al. Modeling of neutral solute transport in a dynamically loaded porous permeable gel: implications for articular cartilage biosynthesis and tissue engineering. , 2003, Journal of biomechanical engineering.
[43] Petr N. Vabishchevich,et al. Splitting scheme for poroelasticity and thermoelasticity problems , 2013, FDM.
[44] Mostafa Bendahmane,et al. A virtual element method for a nonlocal FitzHugh–Nagumo model of cardiac electrophysiology , 2018, IMA Journal of Numerical Analysis.
[45] M. Wheeler,et al. DOMAIN DECOMPOSITION FOR POROELASTICITY AND ELASTICITY WITH DG JUMPS AND MORTARS , 2011 .
[46] Frédéric Nataf,et al. A fully coupled scheme using virtual element method and finite volume for poroelasticity , 2019, Computational Geosciences.
[47] Gianmarco Manzini,et al. Conforming and nonconforming virtual element methods for elliptic problems , 2015, 1507.03543.
[48] Gabriel N. Gatica,et al. A mixed virtual element method for the pseudostress–velocity formulation of the Stokes problem , 2017 .
[49] Lourenço Beirão da Veiga,et al. A Stream Virtual Element Formulation of the Stokes Problem on Polygonal Meshes , 2014, SIAM J. Numer. Anal..
[50] Ricardo Ruiz-Baier,et al. Rotation-Based Mixed Formulations for an Elasticity-Poroelasticity Interface Problem , 2020, SIAM J. Sci. Comput..
[51] L. Beirao da Veiga,et al. Divergence free Virtual Elements for the Stokes problem on polygonal meshes , 2015, 1510.01655.
[52] Lourenço Beirão da Veiga,et al. A mimetic discretization of the Reissner–Mindlin plate bending problem , 2011, Numerische Mathematik.
[53] Emmanuil H. Georgoulis,et al. A posteriori error estimates for the virtual element method , 2016, Numerische Mathematik.
[54] David W. Smith,et al. Solute transport through a deforming porous medium , 2002 .
[55] Andro Mikelić,et al. Convergence of iterative coupling for coupled flow and geomechanics , 2013, Computational Geosciences.
[56] Ricardo Ruiz-Baier,et al. Locking-Free Finite Element Methods for Poroelasticity , 2016, SIAM J. Numer. Anal..
[57] Guosheng Fu,et al. A high-order HDG method for the Biot's consolidation model , 2018, Comput. Math. Appl..
[58] Vivette Girault,et al. Finite Element Methods for Navier-Stokes Equations - Theory and Algorithms , 1986, Springer Series in Computational Mathematics.
[59] David Kay,et al. Stabilized Lowest-Order Finite Element Approximation for Linear Three-Field Poroelasticity , 2015, SIAM J. Sci. Comput..