The marginalized particle filter in practice

The marginalized particle filter is a powerful combination of the particle filter and the Kalman filter, which can be used when the underlying model contains a linear sub-structure, subject to Gaussian noise. This paper will illustrate several positioning and target tracking applications, solved using the marginalized particle filter. Furthermore, we analyze several properties of practical importance, such as its computational complexity and how to cope with quantization effects

[1]  R. E. Kalman,et al.  A New Approach to Linear Filtering and Prediction Problems , 2002 .

[2]  H. Sorenson,et al.  Recursive bayesian estimation using gaussian sums , 1971 .

[3]  Gene H. Golub,et al.  Matrix computations , 1983 .

[4]  John Vanderkooy,et al.  Quantization and Dither: A Theoretical Survey , 1992 .

[5]  N. Gordon,et al.  Novel approach to nonlinear/non-Gaussian Bayesian state estimation , 1993 .

[6]  Petros G. Voulgaris,et al.  On optimal ℓ∞ to ℓ∞ filtering , 1995, Autom..

[7]  N. Peach,et al.  Bearings-only tracking using a set of range-parameterised extended Kalman filters , 1995 .

[8]  G. Casella,et al.  Rao-Blackwellisation of sampling schemes , 1996 .

[9]  Niclas Bergman,et al.  Recursive Bayesian Estimation : Navigation and Tracking Applications , 1999 .

[10]  Simon J. Godsill,et al.  On sequential Monte Carlo sampling methods for Bayesian filtering , 2000, Stat. Comput..

[11]  Branko Ristic,et al.  Comparison of the particle filter with range-parameterized and modified polar EKFs for angle-only tracking , 2000, SPIE Defense + Commercial Sensing.

[12]  Ali H. Sayed,et al.  Linear Estimation (Information and System Sciences Series) , 2000 .

[13]  Rong Chen,et al.  Adaptive joint detection and decoding in flat-fading channels via mixture Kalman filtering , 2000, IEEE Trans. Inf. Theory.

[14]  Jun S. Liu,et al.  Mixture Kalman filters , 2000 .

[15]  C. Andrieu,et al.  A Particle Filter for Model Based Audio Source Separation , 2000 .

[16]  Arnaud Doucet,et al.  Particle filters for state estimation of jump Markov linear systems , 2001, IEEE Trans. Signal Process..

[17]  Simon J. Godsill,et al.  Monte Carlo smoothing for non-linearly distorted signals , 2001, 2001 IEEE International Conference on Acoustics, Speech, and Signal Processing. Proceedings (Cat. No.01CH37221).

[18]  T. Başar,et al.  A New Approach to Linear Filtering and Prediction Problems , 2001 .

[19]  Fredrik Gustafsson,et al.  Particle filters for positioning, navigation, and tracking , 2002, IEEE Trans. Signal Process..

[20]  P. Nordlund Sequential Monte Carlo Filters and Integrated Navigation , 2002 .

[21]  Niklas Svenzén,et al.  Real Time Implementation of Map Aided Positioning using a Bayesian Approach , 2002 .

[22]  Rong Chen,et al.  Delayed-pilot sampling for mixture Kalman filter with application in fading channels , 2002, IEEE Trans. Signal Process..

[23]  A. Doucet,et al.  Particle filtering for partially observed Gaussian state space models , 2002 .

[24]  Visakan Kadirkamanathan,et al.  Parameter estimation of railway vehicle dynamic model using rao-blackwellised particle filter , 2003, 2003 European Control Conference (ECC).

[25]  Thomas Bo Schön,et al.  Particle Filters for System Identification of State-Space Models Linear in Either Parameters or States , 2003 .

[26]  Fredrik Gustafsson,et al.  Particle filtering and Cramer-Rao lower bound for underwater navigation , 2003, 2003 IEEE International Conference on Acoustics, Speech, and Signal Processing, 2003. Proceedings. (ICASSP '03)..

[27]  Petter Frykman Applied particle filters in integrated aircraft navigation , 2003 .

[28]  Timothy J. Robinson,et al.  Sequential Monte Carlo Methods in Practice , 2003 .

[29]  Christian P. Robert,et al.  Monte Carlo Statistical Methods , 2005, Springer Texts in Statistics.

[30]  Andreas Eidehall,et al.  An Automotive Lane Guidance System , 2004 .

[31]  Branko Ristic,et al.  Beyond the Kalman Filter: Particle Filters for Tracking Applications , 2004 .

[32]  Fredrik Gustafsson,et al.  Recursive Bayesian estimation: bearings-only applications , 2005 .

[33]  Fredrik Gustafsson,et al.  Particle filtering for quantized sensor information , 2005, 2005 13th European Signal Processing Conference.

[34]  Thomas B. Schön,et al.  Marginalized particle filters for mixed linear/nonlinear state-space models , 2005, IEEE Transactions on Signal Processing.

[35]  Christian P. Robert,et al.  Monte Carlo Statistical Methods (Springer Texts in Statistics) , 2005 .

[36]  F. Gustafsson,et al.  The marginalized particle filter for automotive tracking applications , 2005, IEEE Proceedings. Intelligent Vehicles Symposium, 2005..

[37]  Mark R. Morelande,et al.  Rao-Blackwellised particle filtering for blind system identification , 2005, Proceedings. (ICASSP '05). IEEE International Conference on Acoustics, Speech, and Signal Processing, 2005..

[38]  Jean-Yves Tourneret,et al.  Joint detection/estimation of multipath effects for the Global Positioning System , 2005, Proceedings. (ICASSP '05). IEEE International Conference on Acoustics, Speech, and Signal Processing, 2005..

[39]  F. Gustafsson,et al.  Complexity analysis of the marginalized particle filter , 2005, IEEE Transactions on Signal Processing.

[40]  F. Gustafsson,et al.  Bayesian Surface and Underwater Navigation , 2006, IEEE Transactions on Signal Processing.

[41]  M. Enqvist,et al.  A Bayesian Approach to Map-Aided Vehicle Positioning , .