Regulation of spermatozoa motility in response to cations in Russian sturgeon Acipenser gueldenstaedtii.

[1]  M. Hulák,et al.  Physico‐chemical properties and protein profiles of sperm from three freshwater chondrostean species: a comparative study among Siberian sturgeon (Acipenser baerii), sterlet (Acipenser ruthenus) and paddlefish (Polyodon spathula) , 2011 .

[2]  M. Hulák,et al.  Spermatozoa concentration, seminal plasma composition and their physiological relationship in the endangered stellate sturgeon (Acipenser stellatus) and Russian sturgeon (Acipenser gueldenstaedtii ). , 2011, Reproduction in domestic animals = Zuchthygiene.

[3]  T. Randák,et al.  Evaluating the function of calcium antagonist on the Cd-induced stress in sperm of Russian sturgeon, Acipenser gueldenstaedtii. , 2010, Aquatic toxicology.

[4]  M. Hulák,et al.  Physico-biochemical parameters and protein profiles of sperm from beluga Huso huso , 2010 .

[5]  J. Cosson,et al.  Frenetic activation of fish spermatozoa flagella entails short-term motility, portending their precocious decadence. , 2010, Journal of fish biology.

[6]  M. Hulák,et al.  Sperm proteins in teleostean and chondrostean (sturgeon) fishes , 2009, Fish Physiology and Biochemistry.

[7]  A. Takemura,et al.  Changes in sperm motility in response to osmolality/Ca2+ in three Indonesian fresh water teleosts: goby (Oxyeleotris marmorata), Java carp (Puntius javanicus), and catfish (Clarias batrachus). , 2006, Comparative biochemistry and physiology. Part A, Molecular & integrative physiology.

[8]  U. Kaupp,et al.  Ca2+ spikes in the flagellum control chemotactic behavior of sperm , 2005, The EMBO journal.

[9]  T. Furuta,et al.  Real-time analysis of the role of Ca2+ in flagellar movement and motility in single sea urchin sperm , 2005, The Journal of cell biology.

[10]  David J Torgerson,et al.  Randomised controlled trial of calcium and supplementation with cholecalciferol (vitamin D3) for prevention of fractures in primary care , 2005, BMJ : British Medical Journal.

[11]  A. Blaber,et al.  Relationship between transmembrane potential and activation of motility in rainbow trout (Salmo gairdneri) , 2005, Fish Physiology and Biochemistry.

[12]  M. Karami,et al.  Spermatozoa motility in the Persian sturgeon, Acipenser persicus: effects of pH, dilution rate, ions and osmolality. , 2004, Reproduction.

[13]  A. Takemura,et al.  Requirement of Ca2+ on activation of sperm motility in euryhaline tilapia Oreochromis mossambicus , 2003, Journal of Experimental Biology.

[14]  R. Ingermann,et al.  Respiration of steelhead trout sperm: sensitivity to pH and carbon dioxide , 2003 .

[15]  J. Cosson,et al.  Effects of ions on the motility of fresh and demembranated paddlefish (Polyodon spathula) spermatozoa. , 2002, Reproduction.

[16]  J. Cosson,et al.  Analysis of motility parameters from paddlefish and shovelnose sturgeon spermatozoa , 2000 .

[17]  S. Damjanovich,et al.  Membrane hyperpolarization removes inactivation of Ca2+ channels, leading to Ca2+ influx and subsequent initiation of sperm motility in the common carp. , 2000, Proceedings of the National Academy of Sciences of the United States of America.

[18]  Susan M. Sogard,et al.  Endurance of simulated winter conditions by age‐0 walleye pollock: effects of body size, water temperature and energy stores , 2000 .

[19]  T. J. Lam,et al.  Effects of osmolality and ions on the motility of stripped and testicular sperm of freshwater-and seawater-acclimated tilapia, Oreochromis mossambicus , 1999 .

[20]  J. Cosson,et al.  Motility analysis and energetics of the Siberian sturgeon Acipenser baerii spermatozoa , 1999 .

[21]  K. Dąbrowski,et al.  Objective analysis of sperm motility in the lake sturgeon, Acipenser fulvescens: activation and inhibition conditions , 1997 .

[22]  W. Shelton,et al.  Motility of spermatozoa from shovelnose sturgeon and paddlefish , 1995 .

[23]  O. Linhart,et al.  Biology of sperm and artificial reproduction in carp , 1995 .

[24]  S. Oda,et al.  Rises of intracellular Ca2+ and pH mediate the initiation of sperm motility by hyperosmolality in marine teleosts. , 1993, Cell motility and the cytoskeleton.

[25]  L. Grande,et al.  Early development of the actinopterygian head. I. External development and staging of the paddlefish Polyodon spathula , 1992, Journal of morphology.

[26]  S. Boitano,et al.  Membrane hyperpolarization activates trout sperm without an increase in intracellular pH. , 1991, Journal of cell science.

[27]  J. Gatti,et al.  Ionic regulation of the plasma membrane potential of rainbow trout (Salmo gairdneri) spermatozoa: Role in the initiation of sperm motility , 1990, Journal of cellular physiology.

[28]  L. Letellier,et al.  Rise of internal Ca2+ accompanies the initiation of trout sperm motility , 1989 .

[29]  M. Morisawa,et al.  Roles for Potassium and Calcium Channels in the Initiation of Sperm Motility in Rainbow Trout. , 1988, Development, growth & differentiation.

[30]  C. Brokaw,et al.  Modulation of the asymmetry of sea urchin sperm flagellar bending by calmodulin , 1985, The Journal of cell biology.

[31]  M. Morisawa,et al.  Osmolality and potassium ion: their roles in initiation of sperm motility in teleosts. , 1980, Science.

[32]  I. Gibbons,et al.  Calcium-induced quiescence in reactivated sea urchin sperm , 1980, The Journal of cell biology.

[33]  C. Brokaw Calcium-induced asymmetrical beating of triton-demembranated sea urchin sperm flagella , 1979, The Journal of cell biology.