A Pointwise Estimator for the k-Fold Convolution of a Distribution Function
暂无分享,去创建一个
[1] P. L. Novi Inverardi,et al. MSE Comparison of Some Different Estimators of Entropy , 2003 .
[2] D. J. McConalogue,et al. Numerical treatment of convolution integrals involving distributions with densities having singularities at the origin , 1981 .
[3] Lirong Cui,et al. Some Normal Approximations for Renewal Function of Large Weibull Shape Parameter , 2003 .
[4] Min Xie,et al. On the solution of renewal-type integral equations , 1989 .
[5] D. J. McConalogue,et al. A Numerical Algorithm for Recursively-Defined Convolution Integrals Involving Distribution Functions , 1976 .
[6] Ali Esmaili,et al. Probability and Random Processes , 2005, Technometrics.
[7] Ing Rj Ser. Approximation Theorems of Mathematical Statistics , 1980 .
[8] M. Pagano,et al. On Obtaining Permutation Distributions in Polynomial Time , 1983 .
[9] F. M. Gryna. Quality planning and analysis , 1970 .
[10] Kenny S. Crump,et al. Numerical Inversion of Laplace Transforms Using a Fourier Series Approximation , 1976, J. ACM.
[11] J. Bert Keats,et al. Quality Planning and Analysis , 1981 .
[12] Edward W. Frees,et al. Warranty analysis and renewal function estimation , 1986 .
[13] Nonparametric estimation of some quantities of interest from renewal theory , 2003 .
[14] Helmut Schneider,et al. Comparison of Nonparametric Estimators for the Renewal Function , 1990 .
[15] Herbert Solomon,et al. Monte Carlo simulation of the renewal function , 1981 .
[16] I. Gertsbakh,et al. Renewal Function and Interval Availability: A Numerical Monte-Carlo Study , 2004 .
[17] L. Baxter. Some remarks on numerical convolution , 1981 .