Image Synthesis by Rank-1 Lattices

Considering uniform points for sampling, rank-1 lattices provide the simplest generation algorithm. Compared to classical tensor product lattices or random samples, their geometry allows for a higher sampling efficiency. These considerations result in a proof that for periodic Lipschitz continuous functions, rank-1 lattices with maximized minimum distance perform best. This result is then investigated in the context of image synthesis, where we study anti-aliasing by rank-1 lattices and using the geometry of rank-1 lattices for sensor and display layouts.

[1]  G. Larcher,et al.  Walsh Series Analysis of the L2-Discrepancyof Symmetrisized Point Sets , 2001 .

[2]  Bernard Péroche,et al.  Non-interleaved deferred shading of interleaved sample patterns , 2006, GH '06.

[3]  Harald Niederreiter,et al.  Error bounds for Quasi-Monte Carlo integration with uniform point sets , 2003 .

[4]  R. Caflisch Monte Carlo and quasi-Monte Carlo methods , 1998, Acta Numerica.

[5]  Harald Niederreiter,et al.  Random number generation and Quasi-Monte Carlo methods , 1992, CBMS-NSF regional conference series in applied mathematics.

[6]  H. Niederreiter,et al.  Quasirandom Sampling in Computer Graphics , 1992 .

[7]  Alexander Keller,et al.  Myths of Computer Graphics , 2006 .

[8]  Qiang Du,et al.  Centroidal Voronoi Tessellations: Applications and Algorithms , 1999, SIAM Rev..

[9]  Jayanthi Sivaswamy,et al.  Hexagonal Image Processing: A Practical Approach (Advances in Pattern Recognition) , 2005 .

[10]  Ronald Cools,et al.  Different Quality Indexes for Lattice Rules , 1997, J. Complex..

[11]  Harald Niederreiter,et al.  Optimal multipliers for pseudo-random number generation by the linear congruential method , 1983 .

[12]  Alexander Keller,et al.  Efficient Multidimensional Sampling , 2002, Comput. Graph. Forum.

[13]  Wolfgang Heidrich,et al.  Interleaved Sampling , 2001, Rendering Techniques.

[14]  Alexander Keller,et al.  Instant radiosity , 1997, SIGGRAPH.

[15]  Alexander Vardy,et al.  Closest point search in lattices , 2002, IEEE Trans. Inf. Theory.

[16]  Peter Shirley,et al.  Generation of Stratified Samples for B-Spline Pixel Filtering , 2005, J. Graph. Tools.

[17]  Steven K. Feiner,et al.  Computer Graphics - Principles and Practice, 3rd Edition , 1990 .

[18]  H. Niederreiter Dyadic fractions with small partial quotients , 1986 .

[19]  Thomas Ertl,et al.  Computer Graphics - Principles and Practice, 3rd Edition , 2014 .

[20]  I. Sloan Lattice Methods for Multiple Integration , 1994 .

[21]  J. Yellott Spectral consequences of photoreceptor sampling in the rhesus retina. , 1983, Science.

[22]  Alexander Keller,et al.  Simulation on Rank-1 Lattices , 2008 .