Compressive Phase Retrieval under Poisson Noise

We present a technique for compressive phase retrieval under Poisson noise using the theory of variance stabilization transforms (VSTs). We modify two existing algorithms using VSTs, and derive worst-case performance bounds for both the algorithms. Our proposed modification allows for easy and very principled parameter tuning. Our estimator is tractable and we also show numerical results on phase recovery of sparse signals for Poisson corrupted measurements, and demonstrate the relative advantage of our modification at low intensities. We also present a comparison of the performance and other theoretical aspects of both the algorithms.

[1]  Emmanuel J. Candès,et al.  Holographic phase retrieval and reference design , 2019, Inverse Problems.

[2]  Yang Wang,et al.  Robust sparse phase retrieval made easy , 2014, 1410.5295.

[3]  B Y Gu,et al.  Gerchberg-Saxton and Yang-Gu algorithms for phase retrieval in a nonunitary transform system: a comparison. , 1994, Applied optics.

[4]  Tom Goldstein,et al.  PhaseMax: Convex Phase Retrieval via Basis Pursuit , 2016, IEEE Transactions on Information Theory.

[5]  Xiaodong Li,et al.  Phase Retrieval via Wirtinger Flow: Theory and Algorithms , 2014, IEEE Transactions on Information Theory.

[6]  Chinmay Talegaonkar,et al.  PERFORMANCE BOUNDS FOR TRACTABLE POISSON DENOISERS WITH PRINCIPLED PARAMETER TUNING , 2018, 2018 IEEE Global Conference on Signal and Information Processing (GlobalSIP).

[7]  Emmanuel J. Candès,et al.  PhaseLift: Exact and Stable Signal Recovery from Magnitude Measurements via Convex Programming , 2011, ArXiv.

[8]  Nicolas Vayatis,et al.  Estimation of Simultaneously Sparse and Low Rank Matrices , 2012, ICML.

[9]  Yonina C. Eldar,et al.  Phase Retrieval: Stability and Recovery Guarantees , 2012, ArXiv.

[10]  Babak Hassibi,et al.  Sparse phase retrieval: Convex algorithms and limitations , 2013, 2013 IEEE International Symposium on Information Theory.

[11]  J R Fienup,et al.  Reconstruction of an object from the modulus of its Fourier transform. , 1978, Optics letters.

[12]  Gang Wang,et al.  Compressive Phase Retrieval via Reweighted Amplitude Flow , 2017, IEEE Transactions on Signal Processing.

[13]  Justin K. Romberg,et al.  Efficient Compressive Phase Retrieval with Constrained Sensing Vectors , 2015, NIPS.

[14]  Prateek Jain,et al.  Phase Retrieval Using Alternating Minimization , 2013, IEEE Transactions on Signal Processing.

[15]  Mike E. Davies,et al.  Iterative Hard Thresholding for Compressed Sensing , 2008, ArXiv.

[16]  S. Sastry,et al.  Compressive Phase Retrieval From Squared Output Measurements Via Semidefinite Programming , 2011, 1111.6323.

[17]  Karthik S. Gurumoorthy,et al.  Variance-stabilization-based compressive inversion under Poisson or Poisson–Gaussian noise with analytical bounds , 2019, Inverse Problems.

[18]  Lei Tian,et al.  Compressive Phase Retrieval , 2011 .

[19]  J. Curtiss On Transformations Used in the Analysis of Variance , 1943 .

[20]  Allen Y. Yang,et al.  CPRL -- An Extension of Compressive Sensing to the Phase Retrieval Problem , 2012, NIPS.

[21]  E. Candès The restricted isometry property and its implications for compressed sensing , 2008 .

[22]  Yonina C. Eldar,et al.  Low-Rank Phase Retrieval , 2016, IEEE Transactions on Signal Processing.