Sequence variants at CHRNB3–CHRNA6 and CYP2A6 affect smoking behavior

C. Gieger | A. Hofman | A. Uitterlinden | T. Spector | R. Mägi | M. McCarthy | H. Stefánsson | D. Rujescu | D. Gudbjartsson | T. Thorgeirsson | I. Giegling | L. Kiemeney | J. Gulcher | U. Thorsteinsdóttir | L. Peltonen | K. Stefánsson | V. Salomaa | M. Perola | C. Steves | N. Samani | A. Hall | M. Mangino | J. Thompson | A. Dirksen | N. Martin | C. Duijn | P. Sulem | A. V. Rij | Gregory T. Jones | J. Kaprio | H. Wichmann | B. Penninx | G. Willemsen | S. Ripatti | A. Metspalu | T. Esko | G. Montgomery | A. Döring | D. Boomsma | M. Stumvoll | T. Rafnar | K. Aben | J. Mayordomo | I. Surakka | J. Kettunen | J. Hottenga | M. Järvelin | I. Prokopenko | S. Grétarsdóttir | B. Saez | M. Krestyaninova | A. Heath | N. Soranzo | M. Heijer | N. Dahmen | W. Franklin | B. Oostra | N. Amin | P. Madden | H. Tiemeier | R. Rawal | Y. Aulchenko | A. Hartikainen | A. Pouta | S. Walter | H. Ashraf | J. Pedersen | P. Kovacs | J. Laitinen | M. Nelis | A. Tönjes | A. Valdes | F. Geller | J. Vink | M. D. García-Prats | N. Vogelzangs | T. Mueller | B. Dieplinger | M. Haltmayer | J. Lindholt | S. E. Matthíasson | Maxine Allen | H. Oskarsson | M. Pergadia | M. Isohanni | T. Tyrfingsson | K. Keskitalo | I. H. Gudjonsdottir | B. Nitz | Veronica De Diego | V. Lezcano | Shen Huei-Yi | S. Jonsson | H. Wolf | S. Gretarsdottir | S. Matthíasson | M. García-Prats | Iris H Gudjonsdottir | A. Uitterlinden | A. Hofman | B. Oostra | D. Boomsma | M. McCarthy | N. Martin | N. Martin | N. Martin | M. McCarthy | Maria Krestyaninova | Stefán E. Matthíasson | Thorarinn Tyrfingsson | Maxine Allen | Kaisu Keskitalo

[1]  Tariq Ahmad,et al.  Meta-analysis and imputation refines the association of 15q25 with smoking quantity , 2010, Nature Genetics.

[2]  Ming D. Li,et al.  Genome-wide meta-analyses identify multiple loci associated with smoking behavior , 2010, Nature Genetics.

[3]  T. Thorgeirsson,et al.  Commentary: gene-environment interactions and smoking-related cancers. , 2010, International journal of epidemiology.

[4]  S. Heath,et al.  Association between a 15q25 gene variant, smoking quantity and tobacco-related cancers among 17 000 individuals. , 2010, International journal of epidemiology.

[5]  L. Peltonen,et al.  Association of serum cotinine level with a cluster of three nicotinic acetylcholine receptor genes (CHRNA3/CHRNA5/CHRNB4) on chromosome 15. , 2009, Human molecular genetics.

[6]  Karlis Podnieks,et al.  A System for Information Management in BioMedical Studies—SIMBioMS , 2009, Bioinform..

[7]  R. Mägi,et al.  Genetic Structure of Europeans: A View from the North–East , 2009, PloS one.

[8]  K. Shianna,et al.  A Genome-Wide Association Study in Chronic Obstructive Pulmonary Disease (COPD): Identification of Two Major Susceptibility Loci , 2009, PLoS genetics.

[9]  Paolo Vineis,et al.  Sequence variants at the TERT-CLPTM1L locus associate with many cancer types , 2009, Nature Genetics.

[10]  David B. Goldstein,et al.  A Genome-Wide Investigation of SNPs and CNVs in Schizophrenia , 2009, PLoS genetics.

[11]  C. Lerman,et al.  Nicotine Dependence Pharmacogenetics: Role of Genetic Variation in Nicotine-Metabolizing Enzymes , 2009, Journal of neurogenetics.

[12]  Monique M. B. Breteler,et al.  The Rotterdam Study: 2016 objectives and design update , 2015, European Journal of Epidemiology.

[13]  J. Kaprio,et al.  Genetics of Smoking Behavior , 2009 .

[14]  A. C. Collins,et al.  The road to discovery of neuronal nicotinic cholinergic receptor subtypes. , 2009, Handbook of experimental pharmacology.

[15]  G. Abecasis,et al.  Genotype imputation. , 2009, Annual review of genomics and human genetics.

[16]  Christian Gieger,et al.  Loci influencing lipid levels and coronary heart disease risk in 16 European population cohorts , 2009, Nature Genetics.

[17]  T. Thorgeirsson,et al.  Genetics of Smoking Behavior and Its Consequences: The Role of Nicotinic Acetylcholine Receptors , 2008, Biological Psychiatry.

[18]  L. Bierut,et al.  Nicotinic Receptor Gene Variants Influence Susceptibility to Heavy Smoking , 2008, Cancer Epidemiology Biomarkers & Prevention.

[19]  M. Spitz,et al.  The CHRNA5-A3 region on chromosome 15q24-25.1 is a risk factor both for nicotine dependence and for lung cancer. , 2008, Journal of the National Cancer Institute.

[20]  Tony Fletcher,et al.  Sequence variant on 8q24 confers susceptibility to urinary bladder cancer , 2008, Nature Genetics.

[21]  Caryn Lerman,et al.  Molecular genetics of successful smoking cessation: convergent genome-wide association study results. , 2008, Archives of general psychiatry.

[22]  H. Ulmer,et al.  The MTP -493TT genotype is associated with peripheral arterial disease: results from the Linz Peripheral Arterial Disease (LIPAD) Study. , 2008, Clinical biochemistry.

[23]  A Hofman,et al.  Bone mineral density, osteoporosis, and osteoporotic fractures: a genome-wide association study , 2008, The Lancet.

[24]  G. Mills,et al.  Genome-wide association scan of tag SNPs identifies a susceptibility locus for lung cancer at 15q25.1 , 2008, Nature Genetics.

[25]  H. Wit Faculty Opinions recommendation of Alpha-5/alpha-3 nicotinic receptor subunit alleles increase risk for heavy smoking. , 2008 .

[26]  Daniel F. Gudbjartsson,et al.  A variant associated with nicotine dependence, lung cancer and peripheral arterial disease , 2008, Nature.

[27]  Paolo Vineis,et al.  A susceptibility locus for lung cancer maps to nicotinic acetylcholine receptor subunit genes on 15q25 , 2008, Nature.

[28]  J. Lindholt,et al.  Can long-term antibiotic treatment prevent progression of peripheral arterial occlusive disease? A large, randomized, double-blinded, placebo-controlled trial. , 2008, Atherosclerosis.

[29]  P. Muglia,et al.  α-5/α-3 nicotinic receptor subunit alleles increase risk for heavy smoking , 2008, Molecular Psychiatry.

[30]  Y. Mineur,et al.  Genetics of nicotinic acetylcholine receptors: Relevance to nicotine addiction. , 2008, Biochemical pharmacology.

[31]  Stephen J. Chanock,et al.  Genomics: When the smoke clears ... , 2008, Nature.

[32]  P. Sullivan,et al.  Genome-wide association of major depression: description of samples for the GAIN Major Depressive Disorder Study: NTR and NESDA biobank projects , 2008, European Journal of Human Genetics.

[33]  L. Kiemeney,et al.  Age- and gender-specific reference values of estimated GFR in Caucasians: the Nijmegen Biomedical Study. , 2007, Kidney international.

[34]  P. Donnelly,et al.  A new multipoint method for genome-wide association studies by imputation of genotypes , 2007, Nature Genetics.

[35]  Leena Peltonen,et al.  Genetic linkage to chromosome 22q12 for a heavy-smoking quantitative trait in two independent samples. , 2007, American journal of human genetics.

[36]  Scott F. Saccone,et al.  Novel genes identified in a high-density genome wide association study for nicotine dependence. , 2007, Human molecular genetics.

[37]  Nicholas G Martin,et al.  Cholinergic nicotinic receptor genes implicated in a nicotine dependence association study targeting 348 candidate genes with 3713 SNPs. , 2007, Human molecular genetics.

[38]  G. Uhl,et al.  Molecular genetics of nicotine dependence and abstinence: whole genome association using 520,000 SNPs , 2007, BMC Genetics.

[39]  E. Lukhtanov,et al.  A novel endonuclease IV post-PCR genotyping system , 2006, Nucleic acids research.

[40]  P. Burton,et al.  A genomewide linkage study of 1,933 families affected by premature coronary artery disease: The British Heart Foundation (BHF) Family Heart Study. , 2005, American journal of human genetics.

[41]  C. Gieger,et al.  KORA-gen - Resource for Population Genetics, Controls and a Broad Spectrum of Disease Phenotypes , 2005 .

[42]  G. Webersinke,et al.  Factor V Leiden, prothrombin G20210A, and methylenetetrahydrofolate reductase C677T mutations are not associated with chronic limb ischemia: the Linz Peripheral Arterial Disease (LIPAD) study. , 2005, Journal of vascular surgery.

[43]  M. Olivier A haplotype map of the human genome. , 2003, Nature.

[44]  M. Olivier A haplotype map of the human genome , 2003, Nature.

[45]  Stephen Z. Smith When the smoke clears. , 2005, The Journal of the Kentucky Medical Association.

[46]  P. Bieńkowski THE ROLE OF NICOTINIC ACETYLCHOLINE RECEPTORS IN ALCOHOL SEEKING BEHAVIOR. , 2004 .

[47]  L. Cardon,et al.  Linkage disequilibrium in young genetically isolated Dutch population , 2004, European Journal of Human Genetics.

[48]  Andres Metspalu The Estonian Genome Project , 2004 .

[49]  Mark Gurney,et al.  The gene encoding phosphodiesterase 4D confers risk of ischemic stroke , 2003, Nature Genetics.

[50]  D. Mash,et al.  Smoking, alcoholism and genetic polymorphisms alter CYP2B6 levels in human brain , 2003, Neuropharmacology.

[51]  Ming D. Li,et al.  A meta-analysis of estimated genetic and environmental effects on smoking behavior in male and female adult twins. , 2003, Addiction.

[52]  C. Harris,et al.  Rapid Akt activation by nicotine and a tobacco carcinogen modulates the phenotype of normal human airway epithelial cells. , 2003, The Journal of clinical investigation.

[53]  J. Kaprio,et al.  Genetic and Environmental Factors in Complex Diseases: The Older Finnish Twin Cohort , 2002, Twin Research.

[54]  T. Spector,et al.  The St. Thomas' UK Adult Twin Registry. , 2002, Twin research : the official journal of the International Society for Twin Studies.

[55]  Jaakko Kaprio,et al.  Genetic and environmental factors in health-related behaviors: studies on Finnish twins and twin families. , 2002, Twin research : the official journal of the International Society for Twin Studies.

[56]  S. Thompson,et al.  Quantifying heterogeneity in a meta‐analysis , 2002, Statistics in medicine.

[57]  Kári Stefánsson,et al.  Protection of privacy by third-party encryption in genetic research in Iceland , 2000, European Journal of Human Genetics.

[58]  K. Roeder,et al.  Genomic Control for Association Studies , 1999, Biometrics.

[59]  M. Neale,et al.  The Genetics of Smoking Initiation and Quantity Smoked in Dutch Adolescent and Young Adult Twins , 1999, Behavior genetics.

[60]  M. Hesselbrock,et al.  A validity study of the SSAGA--a comparison with the SCAN. , 1999, Addiction.

[61]  R. Rutherford,et al.  Recommended standards for reports dealing with lower extremity ischemia: revised version. , 1997, Journal of vascular surgery.

[62]  J. Nurnberger,et al.  A new, semi-structured psychiatric interview for use in genetic linkage studies: a report on the reliability of the SSAGA. , 1994, Journal of studies on alcohol.

[63]  B. Grant,et al.  The CIDI-Core Substance Abuse and Dependence Questions: Cross-cultural and Nosological Issues , 1991, British Journal of Psychiatry.

[64]  Nature Genetics , 1991, Nature.

[65]  J. Rice Mathematical Statistics and Data Analysis , 1988 .