Numerical justification of Leonov conjecture on Lyapunov dimension of Rossler attractor

Exact Lyapunov dimension of attractors of many classical chaotic systems (such as Lorenz, Henon, and Chirikov systems) is obtained. While exact Lyapunov dimension for Rossler system is not known, Leonov formulated the following conjecture: Lyapunov dimension of Rossler attractor is equal to local Lyapunov dimension in one of its stationary points. In the present work Leonov’s conjecture on Lyapunov dimension of various Rossler systems with standard parameters is checked numerically.

[1]  Mohd. Salmi Md. Noorani,et al.  Application of the differential transformation method for the solution of the hyperchaotic Rössler system , 2009 .

[2]  Gene H. Golub,et al.  Matrix computations , 1983 .

[3]  Nikolay V. Kuznetsov,et al.  Hidden attractor in smooth Chua systems , 2012 .

[4]  Gennady A. Leonov,et al.  Lyapunov functions in the attractors dimension theory , 2012 .

[5]  Roberto Barrio,et al.  Qualitative and numerical analysis of the Rössler model: Bifurcations of equilibria , 2011, Comput. Math. Appl..

[6]  Jack K. Hale,et al.  Infinite dimensional dynamical systems , 1983 .

[7]  A. Szczepaniak,et al.  Unstable manifolds for the hyperchaotic Rössler system , 2008 .

[8]  V. Boichenko,et al.  Dimension theory for ordinary differential equations , 2005 .

[9]  Gennady A. Leonov,et al.  Hausdorff and Fractal Dimension Estimates for Invariant Sets of Non-Injective Maps , 1998 .

[10]  Tom Johnston,et al.  Part 1. Theory , 2014 .

[11]  Nikolay V. Kuznetsov,et al.  Time-Varying Linearization and the Perron Effects , 2007, Int. J. Bifurc. Chaos.

[12]  Roberto Barrio,et al.  Qualitative analysis of the Rössler equations: Bifurcations of limit cycles and chaotic attractors , 2009 .

[13]  Nikolay V. Kuznetsov,et al.  Hidden attractors in Dynamical Systems. From Hidden oscillations in Hilbert-Kolmogorov, Aizerman, and Kalman Problems to Hidden Chaotic Attractor in Chua Circuits , 2013, Int. J. Bifurc. Chaos.

[14]  O. Rössler An equation for continuous chaos , 1976 .

[15]  Qingdu Li,et al.  A topological horseshoe in the hyperchaotic Rossler attractor , 2008 .

[16]  G. Leonov,et al.  On stability by the first approximation for discrete systems , 2005, Proceedings. 2005 International Conference Physics and Control, 2005..

[17]  Freddy Dumortier,et al.  Structures in Dynamics: Finite Dimensional Deterministic Studies , 1991 .

[18]  G. Benettin,et al.  Lyapunov Characteristic Exponents for smooth dynamical systems and for hamiltonian systems; a method for computing all of them. Part 1: Theory , 1980 .

[19]  Leon O. Chua,et al.  Practical Numerical Algorithms for Chaotic Systems , 1989 .

[20]  G. Leonov,et al.  Upper estimates for the hausdorff dimension of negatively invariant sets of local cocycles , 2011 .

[21]  J. Yorke,et al.  Chaotic behavior of multidimensional difference equations , 1979 .

[22]  O. Rössler CONTINUOUS CHAOS—FOUR PROTOTYPE EQUATIONS , 1979 .

[23]  A. M. Lyapunov The general problem of the stability of motion , 1992 .

[24]  I. Shimada,et al.  A Numerical Approach to Ergodic Problem of Dissipative Dynamical Systems , 1979 .

[25]  G. Benettin,et al.  Lyapunov Characteristic Exponents for smooth dynamical systems and for hamiltonian systems; A method for computing all of them. Part 2: Numerical application , 1980 .

[26]  G. Leonov,et al.  Localization of hidden Chuaʼs attractors , 2011 .

[27]  A. Wolf,et al.  Determining Lyapunov exponents from a time series , 1985 .

[28]  L. A. Aguirre,et al.  Difference equations versus differential equations, a possible equivalence for the Rössler system? , 2004 .

[29]  Gennady A. Leonov,et al.  The dimension formula for the Lorenz attractor , 2011 .

[30]  Nikolay V. Kuznetsov,et al.  Algorithms for finding hidden oscillations in nonlinear systems. The Aizerman and Kalman conjectures and Chua’s circuits , 2011 .

[31]  Guangwu Yan,et al.  Lattice Boltzmann solver of Rossler equation , 2000 .

[32]  G. Leonov Strange attractors and classical stability theory , 2006 .

[33]  Y. Pesin,et al.  Dimension type characteristics for invariant sets of dynamical systems , 1988 .