On the Dynamical Behavior of Chaotic Cellular Automata
暂无分享,去创建一个
Giancarlo Mauri | Gianpiero Cattaneo | Enrico Formenti | Luciano Margara | G. Mauri | L. Margara | G. Cattaneo | E. Formenti
[1] Giancarlo Mauri,et al. Transformations of the One-Dimensional Cellular Automata Rule Space , 1997, Parallel Comput..
[2] M. Bernhard. Introduction to Chaotic Dynamical Systems , 1992 .
[3] Luciano Margara,et al. Expansivity, Permutivity, and Chaos for Cellular Automata , 1998, Theory of Computing Systems.
[4] Masakazu Nasu,et al. Textile systems for endomorphisms and automorphisms of the shift , 1995 .
[5] R. Mañé,et al. Ergodic Theory and Differentiable Dynamics , 1986 .
[6] M. Shirvani,et al. On ergodic one-dimensional cellular automata , 1991 .
[7] R. Devaney. An Introduction to Chaotic Dynamical Systems , 1990 .
[8] Gianpiero Cattaneo,et al. Ergodicity, transitivity, and regularity for linear cellular automata over Zm , 2000, Theor. Comput. Sci..
[9] Giovanni Manzini,et al. Lyapunov Exponents versus Expansivity and Sensitivity in Cellular Automata , 1998, J. Complex..
[10] Giovanni Manzini,et al. Lyapunov Exponents Vs Expansivity and Sensitivity in Cellular Automata , 1996, ACRI.
[11] Bruno Codenotti,et al. TRANSITIVE CELLULAR AUTOMATA ARE SENSITIVE , 1996 .
[12] J. Banks,et al. On Devaney's definition of chaos , 1992 .
[13] M. Shirvani,et al. Ergodic endomorphisms of compact abelian groups , 1988 .
[14] Gianpiero Cattaneo,et al. Investigating topological chaos by elementary cellular automata dynamics , 2000, Theor. Comput. Sci..
[15] Giovanni Manzini,et al. A Complete and Efficiently Computable Topological Classification of D-dimensional Linear Cellular Automata over Zm , 1997, Theor. Comput. Sci..
[16] Giovanni Manzini,et al. A Complete and Efficiently Computable Topological Classification of D-dimensional Linear Cellular Automata over Zm , 1999, Theor. Comput. Sci..