Crystal structure , photoluminescence and cathodoluminescence of Sr 1 − x Ca x Al 2 O 4 doped with Eu 2 +

The crystal structure, photoluminescence and some cathodoluminescent spectra of Sr0.99−xCaxEu0.01Al2O4 (Eu2+) are described. Five different phases have been found: three different monoclinic phases, one hexagonal and one cubic phase. Based on the cathodoluminescence of SrAl2O4:Eu at low temperature and photoluminescence of Sr1−xCaxAl2O4:Eu at 0 ≤ x ≤ 0.1, we consider an alternative explanation for the origin of the 440 nm peak in the low temperature spectrum of SrAl2O4:Eu, namely that it can be attributed to the emission from Eu2+ ions situated on the alkaline earth sites of the monoclinic P21/n structure that generate the 440 nm emission of CaAl2O4. However, this alternative hypothesis has been eliminated by XRD analyses of SrAl2O4 at low temperature. Published by The Optical Society under the terms of the Creative Commons Attribution 4.0 License. Further distribution of this work must maintain attribution to the author(s) and the published article’s title, journal

[1]  K. Smits,et al.  The search for defects in undoped SrAl2O4 material , 2019, Optical Materials.

[2]  P. A. Tanner,et al.  Origin of the green persistent luminescence of Eu-doped SrAl2O4 from a multiconfigurational ab initio study of 4f7 → 4f65d1 transitions , 2018 .

[3]  D. Engelsen,et al.  Cathodoluminescence of Y2O3:Ln3+ (Ln = Tb, Er and Tm) and Y2O3:Bi3+ nanocrystalline particles at 200 keV , 2018 .

[4]  Xin He,et al.  Correlation of Structure, Tunable Colors, and Lifetimes of (Sr, Ca, Ba)Al2O4:Eu2+, Dy3+ Phosphors , 2017, Materials.

[5]  P. Hobson,et al.  Ultraviolet and blue cathodoluminescence from cubic Y2O3 and Y2O3: Eu3+ generated in a transmission electron microscope , 2016 .

[6]  H. Hagemann,et al.  Thermal and concentration dependent energy transfer of Eu 2+ in SrAl 2 O 4 , 2016 .

[7]  L. Seijo,et al.  Resolving the ambiguity in the relation between Stokes shift and Huang-Rhys parameter. , 2015, Physical chemistry chemical physics : PCCP.

[8]  A. Meijerink,et al.  Eu(2+) luminescence in strontium aluminates. , 2015, Physical chemistry chemical physics : PCCP.

[9]  M. Gaultois,et al.  Average and local structure, debye temperature, and structural rigidity in some oxide compounds related to phosphor hosts. , 2015, ACS applied materials & interfaces.

[10]  J. Ueda,et al.  Evidence of three different Eu2+ sites and their luminescence quenching processes in CaAl2O4:Eu2+ , 2015 .

[11]  D. Engelsen,et al.  Symmetry-Related Transitions in the Photoluminescence and Cathodoluminescence Spectra of Nanosized Cubic Y2O3:Tb3+ , 2015 .

[12]  D. Engelsen,et al.  Symmetry-related transitions in the spectrum of nanosized Cubic Y2O3: Tb3+ , 2015 .

[13]  P. Smet,et al.  Trapping and detrapping in SrAl2O4:Eu,Dy persistent phosphors : influence of excitation wavelength and temperature , 2014 .

[14]  P. Ptáček Applications of Strontium Aluminate Cements , 2014 .

[15]  H. Pöllmann,et al.  X-ray investigations of solid solutions of monocalcium aluminate and monostrontium aluminate important phases in cement and phosphorescence materials , 2014, Powder Diffraction.

[16]  D. S. Kshatri,et al.  Characterization and optical properties of Dy3+ doped nanocrystalline SrAl2O4: Eu2+ phosphor , 2014 .

[17]  V. Dubey,et al.  Optical properties of rare earth-doped barium aluminate synthesized by different methods-A Review , 2015, Research on Chemical Intermediates.

[18]  M. Brik,et al.  Structural and electronic properties of SrAl2O4:Eu2+ from density functional theory calculations , 2013 .

[19]  D. Vollhardt,et al.  Isosbestic points: How a narrow crossing region of curves determines their leading parameter dependence , 2013 .

[20]  J. Ueda,et al.  Optical and optoelectronic analysis of persistent luminescence in Eu2+-Dy3+ codoped SrAl2O4 ceramic phosphor , 2012 .

[21]  Adarsh Shukla Development of a Critically Evaluated Thermodynamic Databse for the Systems Containing Alkaline-Earth Oxides , 2012 .

[22]  P. Smet,et al.  Persistent Luminescence in Eu2+-Doped Compounds: A Review , 2010, Materials.

[23]  J. R. Botha,et al.  Photoluminescence and phosphorescence properties of MAl2O4:Eu2+, Dy3+ (M=Ca, Ba, Sr) phosphors prepared at an initiating combustion temperature of 500 °C , 2009 .

[24]  Jun‐Jie Zhu,et al.  Characterization, luminescence and EPR investigations of Eu2+ activated strontium aluminate phosphor , 2009 .

[25]  M. Willinger,et al.  A general nonaqueous route to crystalline alkaline earth aluminate nanostructures. , 2009, Nanoscale.

[26]  M. Sanjuán,et al.  New insights in the structure―luminescence relationship of Eu:SrAl2O4 , 2009 .

[27]  H. Swart,et al.  Resolution of Eu2+ asymmetrical emission peak of SrAl2O4:Eu2+, Dy3+ phosphor by cathodoluminescence measurements , 2008 .

[28]  T. L. Mercier,et al.  Mechanism of Phosphorescence Appropriate for the Long-Lasting Phosphors Eu2+-Doped SrAl2O4 with Codopants Dy3+ and B3+ , 2005 .

[29]  Xibin Yu,et al.  The influence of some processing conditions on luminescence of SrAl2O4:Eu2+ nanoparticles produced by combustion method , 2004 .

[30]  Yuanhua Lin,et al.  Influence of co-doping different rare earth ions on the luminescence of CaAl2O4-based phosphors , 2003 .

[31]  B. Kennedy,et al.  Synthesis and Evolution of the Crystalline Phases in Ca1−xSrxAl2O4 , 2002 .

[32]  Anne,et al.  Comparison of sol – gel and solid-state prepared Eu 2 + doped calcium aluminates * , 2002 .

[33]  M. Lastusaari,et al.  Comparison of sol-gel and solid-state prepared Eu2+ doped calcium aluminates , 2002 .

[34]  O. Lebedev,et al.  The ferroelectric phase transition in tridymite type BaAL2O4 studied by electron microscopy , 2000 .

[35]  Min-quan Wang,et al.  Synthesis, crystal structure and X-ray powder diffraction data of the phosphor matrix 4SrO·7Al2O3 , 1999 .

[36]  Nobuyoshi Takeuchi,et al.  A New Long Phosphorescent Phosphor with High Brightness, SrAl2 O 4 : Eu2 + , Dy3 + , 1996 .

[37]  G. Blasse,et al.  Luminescence of Eu2+ in Barium and Strontium Aluminate and Gallate. , 1995 .

[38]  R. D. Shannon Revised effective ionic radii and systematic studies of interatomic distances in halides and chalcogenides , 1976 .

[39]  D. W. Goodwin,et al.  The refined structure of SrO.2Al2O3 , 1972 .

[40]  Victor J. Abbruscato,et al.  Optical and Electrical Properties of SrAl2 O 4 : Eu2 + , 1971 .

[41]  G. Blasse,et al.  Some New Classes of Efficient Eu2+ ‐Activated Phosphors , 1968 .

[42]  A. Levine,et al.  Fluorescent Properties of Alkaline Earth Aluminates of the Type MAl2 O 4 Activated by Divalent Europium , 1968 .