Granger causality-based information fusion applied to electrical measurements from power transformers
暂无分享,去创建一个
Andrés Ortiz | Francisco Jesús Martínez-Murcia | Juan Manuel Górriz | Javier Ramírez | Carlos García Puntonet | Diego Salas-Gonzalez | Fermín Segovia | John Suckling | Diego Castillo-Barnes | Francisco J. Martínez-Murcia | Jacob Rodriguez-Rivero | Ignacio Álvarez | Carmen Jimenez-Mesa | F. J. Leiva | S. Carillo | J. Suckling | J. Ramírez | J. Górriz | C. Puntonet | Ignacio Álvarez Illán | F. Segovia | S. Carillo | A. Ortiz | D. Castillo-Barnes | D. Salas-González | J. Rodriguez-Rivero | C. Jiménez-Mesa | F. J. Leiva
[1] Patrick L Purdon,et al. A study of problems encountered in Granger causality analysis from a neuroscience perspective , 2017, Proceedings of the National Academy of Sciences.
[2] Rainer Goebel,et al. The identification of interacting networks in the brain using fMRI: Model selection, causality and deconvolution , 2011, NeuroImage.
[3] Karl J. Friston,et al. Effective connectivity: Influence, causality and biophysical modeling , 2011, NeuroImage.
[4] A. Edwards. Likelihood (Expanded Edition) , 1972 .
[5] J. Geweke,et al. Measurement of Linear Dependence and Feedback between Multiple Time Series , 1982 .
[6] A. G. Expósito,et al. Power system parameter estimation: a survey , 2000 .
[7] Anil K. Seth,et al. The MVGC multivariate Granger causality toolbox: A new approach to Granger-causal inference , 2014, Journal of Neuroscience Methods.
[8] J. Pearl. Causality: Models, Reasoning and Inference , 2000 .
[9] C. Granger. Investigating Causal Relations by Econometric Models and Cross-Spectral Methods , 1969 .
[10] Steven L. Bressler,et al. Wiener–Granger Causality: A well established methodology , 2011, NeuroImage.
[11] Karl J. Friston. Functional and Effective Connectivity: A Review , 2011, Brain Connect..
[12] Anil K. Seth,et al. A MATLAB toolbox for Granger causal connectivity analysis , 2010, Journal of Neuroscience Methods.
[13] H Preißl,et al. Dynamics of activity and connectivity in physiological neuronal networks , 1991 .
[14] J. Geweke,et al. Measures of Conditional Linear Dependence and Feedback between Time Series , 1984 .
[15] P. Mirowski,et al. Statistical Machine Learning and Dissolved Gas Analysis: A Review , 2012, IEEE Transactions on Power Delivery.
[16] S. Bressler,et al. Granger Causality: Basic Theory and Application to Neuroscience , 2006, q-bio/0608035.
[17] Juan Manuel Górriz,et al. A new model for time-series forecasting using radial basis functions and exogenous data , 2004, Neural Computing & Applications.
[18] B. Efron. Bootstrap Methods: Another Look at the Jackknife , 1979 .
[19] Y. Benjamini,et al. THE CONTROL OF THE FALSE DISCOVERY RATE IN MULTIPLE TESTING UNDER DEPENDENCY , 2001 .
[20] Karl J. Friston,et al. Dynamic causal modelling , 2003, NeuroImage.
[21] Abdolrahman Peimankar,et al. Evolutionary multi-objective fault diagnosis of power transformers , 2017, Swarm Evol. Comput..
[22] Antonio Gómez Expósito,et al. A Multilevel State Estimation Paradigm for Smart Grids , 2011, Proceedings of the IEEE.
[23] A. Abur,et al. Power system state estimation , 2004 .
[24] Jennifer Vanessa Mejía Lara,et al. Expert system for power transformer diagnosis , 2017, 2017 IEEE XXIV International Conference on Electronics, Electrical Engineering and Computing (INTERCON).
[25] John R. Freeman. Granger Causality and the Time Series Analysis of Political Relationships , 1983 .
[26] Alard Roebroeck,et al. Causal Time Series Analysis of Functional Magnetic Resonance Imaging Data , 2009, NIPS Mini-Symposium on Causality in Time Series.
[27] A. Seth,et al. Multivariate Granger causality and generalized variance. , 2010, Physical review. E, Statistical, nonlinear, and soft matter physics.