Space Simulation Testing of the Helicon Double Layer Thruster Prototype
暂无分享,去创建一个
[1] C. Charles,et al. Magnetic Ion Beam Deflection in the Helicon Double-Layer Thruster , 2010 .
[2] C. Charles,et al. Thrust measurements in a low-magnetic field high-density mode in the helicon double layer thruster , 2010 .
[3] C. Charles,et al. Operating Radio Frequency Antennas Immersed in Vacuum: Implications for Ground-Testing Plasma Thrusters , 2010 .
[4] C. Charles,et al. Ion beam formation in a very low magnetic field expanding helicon discharge , 2010 .
[5] G. Dilecce,et al. N 2 とO 2 によるN 2 + (B 2 Σ u + ,ν=0)の衝突消光と窒素スペクトル帯の強度比によるE/N測定に及ぼす影響 , 2010 .
[6] K. P. Shamrai,et al. The effect of magnetic configuration on ion acceleration from a compact helicon source with permanent magnets , 2010 .
[7] C. Charles,et al. High density mode in xenon produced by a Helicon Double Layer Thruster , 2009 .
[8] Christine Charles,et al. Plasmas for spacecraft propulsion , 2009 .
[9] Leonard D. Cassady,et al. VASIMR Technological Advances and First Stage Performance Results , 2009 .
[10] C. Charles,et al. A high sensitivity momentum flux measuring instrument for plasma thruster exhausts and diffusive plasmas. , 2009, The Review of scientific instruments.
[11] G. Jakob,et al. Hall effect in laser ablated Co2(Mn,Fe)Si thin films , 2008, 0809.4978.
[12] E. Scime,et al. Laser induced fluorescence of xenon ions in a magnetized plasma , 2009 .
[13] C. Charles,et al. Magnetic steering of a helicon double layer thruster , 2008 .
[14] C. Charles,et al. Double layer in an expanding plasma: Simultaneous upstream and downstream measurements , 2008 .
[15] C. Charles,et al. An experimental investigation of alternative propellants for the helicon double layer thruster , 2008 .
[16] C. Charles,et al. Spatial retarding field energy analyzer measurements downstream of a helicon double layer plasma , 2008 .
[17] C. Charles,et al. Operating the Helicon Double Layer Thruster in a Space Simulation Chamber , 2008, IEEE Transactions on Plasma Science.
[18] C. Charles,et al. Spatial evolution of an ion beam created by a geometrically expanding low-pressure argon plasma , 2008 .
[19] E. Scime,et al. Ion beam acceleration in a divergent magnetic field , 2008 .
[20] R. Boswell,et al. Mini-conference on helicon plasma sources , 2008 .
[21] Chengliang Sun,et al. Magnetoelectric coupling in CoFe₂O₄/SrRuO₃/Pb(Zr[sub 0.52]Ti[sub 0.48])O₃ heteroepitaxial thin film structure , 2008 .
[22] Qian Lei,et al. ZnO/MgOコア/シェル量子ドットの光ルミネセンス特性の時間発展 , 2008 .
[23] Michael D. West,et al. Testing a Helicon Double Layer Thruster Immersed in a Space-Simulation Chamber , 2008 .
[24] C. Charles,et al. Ion beam formation in a low-pressure geometrically expanding argon plasma , 2007 .
[25] C. Charles,et al. The magnetic-field-induced transition from an expanding plasma to a double layer containing expanding plasma , 2007 .
[26] C. Charles,et al. Low energy plasma treatment of a proton exchange membrane used for low temperature fuel cells , 2007 .
[27] N. Plihon,et al. Experimental investigation of double layers in expanding plasmas , 2007, 1505.06303.
[28] Christine Charles,et al. Xenon ion beam characterization in a helicon double layer thruster , 2006 .
[29] C. Choy,et al. Dielectric properties and abnormal C-V characteristics of Ba[sub 0.5]Sr[sub 0.5]TiO₃-Bi[sub 1.5]ZnNb[sub 1.5]O[sub 7] composite thin films grown on MgO (001) substrates by pulsed laser deposition , 2006 .
[30] Robert M. Winglee,et al. Plasma characteristics of a high power helicon discharge , 2006 .
[31] M. Lieberman,et al. A theory for formation of a low pressure, current-free double layer , 2006, Physical review letters.
[32] A. J. Parfitt,et al. Helicon Double Layer Thrusters , 2006 .
[33] C. Charles,et al. Interface creation and stress dynamics in plasma-deposited silicon dioxide films , 2006 .
[34] H. Chan,et al. dc bias-induced dielectric anomalies in -oriented 0.9Pb(Mg[sub ⅓]Nb[sub ⅔]O₃)-0.1PbTiO₃ single crystals , 2006 .
[35] C. Charles,et al. Experimental evidence of a double layer in a large volume helicon reactor. , 2005, Physical review letters.
[36] J. H. Kang,et al. Measurement of the wrong-sign decays D0 --> K+ pi- pi0 and D0 --> K+ pi- pi+ pi-, and search for CP violation. , 2005, Physical review letters.
[37] C. Charles,et al. Observations of ion-beam formation in a current-free double layer. , 2005, Physical review letters.
[38] C. Charles,et al. One-dimensional particle-in-cell simulation of a current-free double layer in an expanding plasma , 2005 .
[39] C. Charlesa. High source potential upstream of a current-free electric double layer , 2005 .
[40] C. Charles,et al. Time development of a current-free double-layer , 2004 .
[41] F. Levinton,et al. Ion acceleration in plasmas emerging from a helicon-heated magnetic-mirror device , 2003 .
[42] Christine Charles,et al. Current-free double-layer formation in a high-density helicon discharge , 2003 .
[43] M. Lieberman,et al. Energy balance in a low pressure capacitive discharge driven by a double-saddle antenna , 2003 .
[44] C. Franck,et al. Mode transitions in helicon discharges , 2003 .
[45] M. Lieberman,et al. Absolute measurements and modeling of radio frequency electric fields using a retarding field energy analyzer , 2000 .
[46] M. Lieberman,et al. Modeling the transitions from capacitive to inductive to wave-sustained rf discharges , 1998 .
[47] R. Boswell,et al. Evolution of ion and electron energy distributions in pulsed helicon plasma discharges , 1998 .
[48] A. W. Degeling,et al. Plasma production from helicon waves , 1996 .
[49] A. Lichtenberg,et al. Principles of Plasma Discharges and Materials Processing , 1994 .
[50] N. Hershkowitz. Review of recent laboratory double layer experiments , 1985 .
[51] R. Boswell. Very efficient plasma generation by whistler waves near the lower hybrid frequency , 1984 .
[52] R. Boswell,et al. Plasma production using a standing helicon wave , 1970 .