Space Simulation Testing of the Helicon Double Layer Thruster Prototype

A prototype of the Helicon Double Layer Thruster (HDLT), a new magnetoplasma thruster that produces a high velocity collimated ion beam using a current-free double layer, has been tested and characterised for the first time inside a space simulation vacuum chamber. The first experimental evidence of the double layer and associated ion beam with the HDLT prototype immersed in vacuum has been obtained. When using argon, the plasma and ion beam have been investigated with a retarding field energy analyser (RFEA), a Langmuir probe and with a new high sensitivity momentum flux measuring instrument (MFMI) designed to measure the thrust imparted by the exhaust of the HDLT prototype. When using xenon and increasing the RF power applied to the HDLT prototype, a new high density ‘blue’ mode has been observed. This mode occurs when the plasma source transitions from a capacitively coupled to what may be a helicon wave-sustained mode. The mode transition is accompanied by a significant increase in the plasma density and the appearance of a bright white/blue plasma. The mode has been investigated with the RFEA, Langmuir probe and MFMI and it has been shown that the thrust produced by the HDLT prototype increases in this mode.

[1]  C. Charles,et al.  Magnetic Ion Beam Deflection in the Helicon Double-Layer Thruster , 2010 .

[2]  C. Charles,et al.  Thrust measurements in a low-magnetic field high-density mode in the helicon double layer thruster , 2010 .

[3]  C. Charles,et al.  Operating Radio Frequency Antennas Immersed in Vacuum: Implications for Ground-Testing Plasma Thrusters , 2010 .

[4]  C. Charles,et al.  Ion beam formation in a very low magnetic field expanding helicon discharge , 2010 .

[5]  G. Dilecce,et al.  N 2 とO 2 によるN 2 + (B 2 Σ u + ,ν=0)の衝突消光と窒素スペクトル帯の強度比によるE/N測定に及ぼす影響 , 2010 .

[6]  K. P. Shamrai,et al.  The effect of magnetic configuration on ion acceleration from a compact helicon source with permanent magnets , 2010 .

[7]  C. Charles,et al.  High density mode in xenon produced by a Helicon Double Layer Thruster , 2009 .

[8]  Christine Charles,et al.  Plasmas for spacecraft propulsion , 2009 .

[9]  Leonard D. Cassady,et al.  VASIMR Technological Advances and First Stage Performance Results , 2009 .

[10]  C. Charles,et al.  A high sensitivity momentum flux measuring instrument for plasma thruster exhausts and diffusive plasmas. , 2009, The Review of scientific instruments.

[11]  G. Jakob,et al.  Hall effect in laser ablated Co2(Mn,Fe)Si thin films , 2008, 0809.4978.

[12]  E. Scime,et al.  Laser induced fluorescence of xenon ions in a magnetized plasma , 2009 .

[13]  C. Charles,et al.  Magnetic steering of a helicon double layer thruster , 2008 .

[14]  C. Charles,et al.  Double layer in an expanding plasma: Simultaneous upstream and downstream measurements , 2008 .

[15]  C. Charles,et al.  An experimental investigation of alternative propellants for the helicon double layer thruster , 2008 .

[16]  C. Charles,et al.  Spatial retarding field energy analyzer measurements downstream of a helicon double layer plasma , 2008 .

[17]  C. Charles,et al.  Operating the Helicon Double Layer Thruster in a Space Simulation Chamber , 2008, IEEE Transactions on Plasma Science.

[18]  C. Charles,et al.  Spatial evolution of an ion beam created by a geometrically expanding low-pressure argon plasma , 2008 .

[19]  E. Scime,et al.  Ion beam acceleration in a divergent magnetic field , 2008 .

[20]  R. Boswell,et al.  Mini-conference on helicon plasma sources , 2008 .

[21]  Chengliang Sun,et al.  Magnetoelectric coupling in CoFe₂O₄/SrRuO₃/Pb(Zr[sub 0.52]Ti[sub 0.48])O₃ heteroepitaxial thin film structure , 2008 .

[22]  Qian Lei,et al.  ZnO/MgOコア/シェル量子ドットの光ルミネセンス特性の時間発展 , 2008 .

[23]  Michael D. West,et al.  Testing a Helicon Double Layer Thruster Immersed in a Space-Simulation Chamber , 2008 .

[24]  C. Charles,et al.  Ion beam formation in a low-pressure geometrically expanding argon plasma , 2007 .

[25]  C. Charles,et al.  The magnetic-field-induced transition from an expanding plasma to a double layer containing expanding plasma , 2007 .

[26]  C. Charles,et al.  Low energy plasma treatment of a proton exchange membrane used for low temperature fuel cells , 2007 .

[27]  N. Plihon,et al.  Experimental investigation of double layers in expanding plasmas , 2007, 1505.06303.

[28]  Christine Charles,et al.  Xenon ion beam characterization in a helicon double layer thruster , 2006 .

[29]  C. Choy,et al.  Dielectric properties and abnormal C-V characteristics of Ba[sub 0.5]Sr[sub 0.5]TiO₃-Bi[sub 1.5]ZnNb[sub 1.5]O[sub 7] composite thin films grown on MgO (001) substrates by pulsed laser deposition , 2006 .

[30]  Robert M. Winglee,et al.  Plasma characteristics of a high power helicon discharge , 2006 .

[31]  M. Lieberman,et al.  A theory for formation of a low pressure, current-free double layer , 2006, Physical review letters.

[32]  A. J. Parfitt,et al.  Helicon Double Layer Thrusters , 2006 .

[33]  C. Charles,et al.  Interface creation and stress dynamics in plasma-deposited silicon dioxide films , 2006 .

[34]  H. Chan,et al.  dc bias-induced dielectric anomalies in -oriented 0.9Pb(Mg[sub ⅓]Nb[sub ⅔]O₃)-0.1PbTiO₃ single crystals , 2006 .

[35]  C. Charles,et al.  Experimental evidence of a double layer in a large volume helicon reactor. , 2005, Physical review letters.

[36]  J. H. Kang,et al.  Measurement of the wrong-sign decays D0 --> K+ pi- pi0 and D0 --> K+ pi- pi+ pi-, and search for CP violation. , 2005, Physical review letters.

[37]  C. Charles,et al.  Observations of ion-beam formation in a current-free double layer. , 2005, Physical review letters.

[38]  C. Charles,et al.  One-dimensional particle-in-cell simulation of a current-free double layer in an expanding plasma , 2005 .

[39]  C. Charlesa High source potential upstream of a current-free electric double layer , 2005 .

[40]  C. Charles,et al.  Time development of a current-free double-layer , 2004 .

[41]  F. Levinton,et al.  Ion acceleration in plasmas emerging from a helicon-heated magnetic-mirror device , 2003 .

[42]  Christine Charles,et al.  Current-free double-layer formation in a high-density helicon discharge , 2003 .

[43]  M. Lieberman,et al.  Energy balance in a low pressure capacitive discharge driven by a double-saddle antenna , 2003 .

[44]  C. Franck,et al.  Mode transitions in helicon discharges , 2003 .

[45]  M. Lieberman,et al.  Absolute measurements and modeling of radio frequency electric fields using a retarding field energy analyzer , 2000 .

[46]  M. Lieberman,et al.  Modeling the transitions from capacitive to inductive to wave-sustained rf discharges , 1998 .

[47]  R. Boswell,et al.  Evolution of ion and electron energy distributions in pulsed helicon plasma discharges , 1998 .

[48]  A. W. Degeling,et al.  Plasma production from helicon waves , 1996 .

[49]  A. Lichtenberg,et al.  Principles of Plasma Discharges and Materials Processing , 1994 .

[50]  N. Hershkowitz Review of recent laboratory double layer experiments , 1985 .

[51]  R. Boswell Very efficient plasma generation by whistler waves near the lower hybrid frequency , 1984 .

[52]  R. Boswell,et al.  Plasma production using a standing helicon wave , 1970 .