Good Feature Matching: Toward Accurate, Robust VO/VSLAM With Low Latency

Analysis of state-of-the-art visual odometry/visual simultaneous localization and mapping (VSLAM) system exposes a gap in balancing performance (accuracy and robustness) and efficiency (latency). Feature-based systems exhibit good performance, yet have higher latency due to explicit data association; direct and semidirect systems have lower latency, but are inapplicable in some target scenarios or exhibit lower accuracy than feature-based ones. This article aims to fill the performance-efficiency gap with an enhancement applied to feature-based VSLAM. We present good feature matching, an active map-to-frame feature matching method. Feature matching effort is tied to submatrix selection, which has combinatorial time complexity and requires choosing a scoring metric. Via simulation, the Max-logDet matrix revealing metric is shown to perform best. For real-time applicability, the combination of deterministic selection and randomized acceleration is studied. The proposed algorithm is integrated into monocular and stereo feature-based VSLAM systems. Extensive evaluations on multiple benchmarks and compute hardware quantify the latency reduction and the accuracy and robustness preservation.

[1]  Yipu Zhao,et al.  Good Line Cutting: Towards Accurate Pose Tracking of Line-Assisted VO/VSLAM , 2018, ECCV.

[2]  Jörg Stückler,et al.  The TUM VI Benchmark for Evaluating Visual-Inertial Odometry , 2018, 2018 IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS).

[3]  Davide Scaramuzza,et al.  Low-latency visual odometry using event-based feature tracks , 2016, 2016 IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS).

[4]  Olivier Stasse,et al.  MonoSLAM: Real-Time Single Camera SLAM , 2007, IEEE Transactions on Pattern Analysis and Machine Intelligence.

[5]  Teresa A. Vidal-Calleja,et al.  Impact of Landmark Parametrization on Monocular EKF-SLAM with Points and Lines , 2011, International Journal of Computer Vision.

[6]  Daniel Cremers,et al.  Stereo DSO: Large-Scale Direct Sparse Visual Odometry with Stereo Cameras , 2017, 2017 IEEE International Conference on Computer Vision (ICCV).

[7]  Luca Carlone,et al.  Attention and anticipation in fast visual-inertial navigation , 2016, 2017 IEEE International Conference on Robotics and Automation (ICRA).

[8]  Christos Boutsidis,et al.  Near-Optimal Column-Based Matrix Reconstruction , 2014, SIAM J. Comput..

[9]  Yipu Zhao,et al.  Low-latency Visual SLAM with Appearance-Enhanced Local Map Building , 2019, 2019 International Conference on Robotics and Automation (ICRA).

[10]  Ming Gu,et al.  Efficient Algorithms for Computing a Strong Rank-Revealing QR Factorization , 1996, SIAM J. Sci. Comput..

[11]  Shaojie Shen,et al.  VINS-Mono: A Robust and Versatile Monocular Visual-Inertial State Estimator , 2017, IEEE Transactions on Robotics.

[12]  Kostas Daniilidis,et al.  Event-Based Visual Inertial Odometry , 2017, 2017 IEEE Conference on Computer Vision and Pattern Recognition (CVPR).

[13]  Vincent Lepetit,et al.  BRIEF: Binary Robust Independent Elementary Features , 2010, ECCV.

[14]  David P. Woodruff,et al.  Fast approximation of matrix coherence and statistical leverage , 2011, ICML.

[15]  Xianliang Wu,et al.  Feature selection for reliable data association in visual SLAM , 2012, Machine Vision and Applications.

[16]  Carlo Tomasi,et al.  Good features to track , 1994, 1994 Proceedings of IEEE Conference on Computer Vision and Pattern Recognition.

[17]  Patricio A. Vela,et al.  Optimally observable and minimal cardinality monocular SLAM , 2015, 2015 IEEE International Conference on Robotics and Automation (ICRA).

[18]  John Lygeros,et al.  On Submodularity and Controllability in Complex Dynamical Networks , 2014, IEEE Transactions on Control of Network Systems.

[19]  Christos Boutsidis,et al.  An improved approximation algorithm for the column subset selection problem , 2008, SODA.

[20]  Javier Gonzalez-Jimenez,et al.  PL-SLAM: A Stereo SLAM System Through the Combination of Points and Line Segments , 2017, IEEE Transactions on Robotics.

[21]  Bo Yu,et al.  FPGA-based ORB feature extraction for real-time visual SLAM , 2017, 2017 International Conference on Field Programmable Technology (ICFPT).

[22]  Daniel Cremers,et al.  LSD-SLAM: Large-Scale Direct Monocular SLAM , 2014, ECCV.

[23]  Patricio A. Vela,et al.  Good features to track for visual SLAM , 2015, 2015 IEEE Conference on Computer Vision and Pattern Recognition (CVPR).

[24]  Davide Scaramuzza,et al.  A Benchmark Comparison of Monocular Visual-Inertial Odometry Algorithms for Flying Robots , 2018, 2018 IEEE International Conference on Robotics and Automation (ICRA).

[25]  J. M. M. Montiel,et al.  ORB-SLAM: A Versatile and Accurate Monocular SLAM System , 2015, IEEE Transactions on Robotics.

[26]  Gene H. Golub,et al.  Matrix computations , 1983 .

[27]  Ricardo Carelli,et al.  Feature Selection Criteria for Real Time EKF-SLAM Algorithm , 2009 .

[28]  Ali Shokoufandeh,et al.  Landmark Selection for Vision-Based Navigation , 2004, IEEE Transactions on Robotics.

[29]  Hauke Strasdat,et al.  Scalable active matching , 2010, 2010 IEEE Computer Society Conference on Computer Vision and Pattern Recognition.

[30]  Vijay Kumar,et al.  The Open Vision Computer: An Integrated Sensing and Compute System for Mobile Robots , 2018, 2019 International Conference on Robotics and Automation (ICRA).

[31]  Pavel Zemcík,et al.  Camera Pose Estimation from Lines using Plücker Coordinates , 2016, BMVC.

[32]  Roland Siegwart,et al.  The EuRoC micro aerial vehicle datasets , 2016, Int. J. Robotics Res..

[33]  Andreas Geiger,et al.  Vision meets robotics: The KITTI dataset , 2013, Int. J. Robotics Res..

[34]  Vijay Kumar,et al.  Robust Stereo Visual Inertial Odometry for Fast Autonomous Flight , 2017, IEEE Robotics and Automation Letters.

[35]  Gary R. Bradski,et al.  ORB: An efficient alternative to SIFT or SURF , 2011, 2011 International Conference on Computer Vision.

[36]  Luca Carlone,et al.  Visual-Inertial Odometry on Chip: An Algorithm-and-Hardware Co-design Approach , 2017, Robotics: Science and Systems.

[37]  Daniel Cremers,et al.  Direct Sparse Odometry , 2016, IEEE Transactions on Pattern Analysis and Machine Intelligence.

[38]  Andrew W. Fitzgibbon,et al.  KinectFusion: Real-time dense surface mapping and tracking , 2011, 2011 10th IEEE International Symposium on Mixed and Augmented Reality.

[39]  Viorela Ila,et al.  Fast Incremental Bundle Adjustment with Covariance Recovery , 2017, 2017 International Conference on 3D Vision (3DV).

[40]  Haris Vikalo,et al.  Greedy sensor selection: Leveraging submodularity , 2010, 49th IEEE Conference on Decision and Control (CDC).

[41]  Sen Zhang,et al.  Entropy based feature selection scheme for real time simultaneous localization and map building , 2005, 2005 IEEE/RSJ International Conference on Intelligent Robots and Systems.

[42]  Davide Scaramuzza,et al.  Real-time Visual-Inertial Odometry for Event Cameras using Keyframe-based Nonlinear Optimization , 2017, BMVC.

[43]  Pierre Vandergheynst,et al.  FREAK: Fast Retina Keypoint , 2012, 2012 IEEE Conference on Computer Vision and Pattern Recognition.

[44]  Michael Bosse,et al.  Keyframe-based visual–inertial odometry using nonlinear optimization , 2015, Int. J. Robotics Res..

[45]  Jörg Stückler,et al.  Direct Sparse Odometry with Rolling Shutter , 2018, ECCV.

[46]  Frank Dellaert,et al.  Covariance recovery from a square root information matrix for data association , 2009, Robotics Auton. Syst..

[47]  Juan D. Tardós,et al.  Data association in stochastic mapping using the joint compatibility test , 2001, IEEE Trans. Robotics Autom..

[48]  Michel Minoux,et al.  Accelerated greedy algorithms for maximizing submodular set functions , 1978 .

[49]  Viorela Ila,et al.  SLAM++ 1 -A highly efficient and temporally scalable incremental SLAM framework , 2017, Int. J. Robotics Res..

[50]  Michael F. P. O'Boyle,et al.  Introducing SLAMBench, a performance and accuracy benchmarking methodology for SLAM , 2014, 2015 IEEE International Conference on Robotics and Automation (ICRA).

[51]  Javier Civera,et al.  1‐Point RANSAC for extended Kalman filtering: Application to real‐time structure from motion and visual odometry , 2010, J. Field Robotics.

[52]  Michael F. P. O'Boyle,et al.  SLAMBench2: Multi-Objective Head-to-Head Benchmarking for Visual SLAM , 2018, 2018 IEEE International Conference on Robotics and Automation (ICRA).

[53]  Andrew J. Davison,et al.  Active search for real-time vision , 2005, Tenth IEEE International Conference on Computer Vision (ICCV'05) Volume 1.

[54]  Andrew J. Davison,et al.  FutureMapping: The Computational Structure of Spatial AI Systems , 2018, ArXiv.

[55]  Andreas Krause,et al.  Lazier Than Lazy Greedy , 2014, AAAI.

[56]  Stefano Soatto,et al.  KALMANSAC: robust filtering by consensus , 2005, Tenth IEEE International Conference on Computer Vision (ICCV'05) Volume 1.

[57]  Stefan Leutenegger,et al.  ElasticFusion: Real-time dense SLAM and light source estimation , 2016, Int. J. Robotics Res..

[58]  G. Klein,et al.  Parallel Tracking and Mapping for Small AR Workspaces , 2007, 2007 6th IEEE and ACM International Symposium on Mixed and Augmented Reality.

[59]  Roland Siegwart,et al.  BRISK: Binary Robust invariant scalable keypoints , 2011, 2011 International Conference on Computer Vision.

[60]  Stephen L. Smith,et al.  Submodularity and greedy algorithms in sensor scheduling for linear dynamical systems , 2015, Autom..

[61]  Daniel Cremers,et al.  Challenges in Monocular Visual Odometry: Photometric Calibration, Motion Bias, and Rolling Shutter Effect , 2017, IEEE Robotics and Automation Letters.

[62]  Jürgen Sturm,et al.  Evaluating Egomotion and Structure-from-Motion Approaches Using the TUM RGB-D Benchmark , 2012 .

[63]  Avinatan Hassidim,et al.  Robust Guarantees of Stochastic Greedy Algorithms , 2017, ICML.

[64]  Steve Furber,et al.  Navigating the Landscape for Real-Time Localization and Mapping for Robotics and Virtual and Augmented Reality , 2018, Proceedings of the IEEE.

[65]  Michael Gassner,et al.  SVO: Semidirect Visual Odometry for Monocular and Multicamera Systems , 2017, IEEE Transactions on Robotics.

[66]  S. Muthukrishnan,et al.  Relative-Error CUR Matrix Decompositions , 2007, SIAM J. Matrix Anal. Appl..

[67]  Yipu Zhao,et al.  Good Feature Selection for Least Squares Pose Optimization in VO/VSLAM , 2018, 2018 IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS).

[68]  Andrew J. Davison,et al.  Active Matching , 2008, ECCV.

[69]  Ivan Petrovic,et al.  Stereo odometry based on careful feature selection and tracking , 2015, 2015 European Conference on Mobile Robots (ECMR).