Fault-tolerant quantum computation versus Gaussian noise

We study the robustness of a fault-tolerant quantum computer subject to Gaussian non-Markovian quantum noise, and we show that scalable quantum computation is possible if the noise power spectrum satisfies an appropriate “threshold condition.” Our condition is less sensitive to very-high-frequency noise than previously derived threshold conditions for non-Markovian noise.

[1]  Panos Aliferis,et al.  Fibonacci scheme for fault-tolerant quantum computation , 2007, 0709.3603.

[2]  Ben Reichardt,et al.  Fault-Tolerant Quantum Computation , 2016, Encyclopedia of Algorithms.

[3]  Andrew P. Hines,et al.  Decoherence in quantum walks and quantum computers , 2007, 0711.1555.

[4]  John Preskill,et al.  Quantum accuracy threshold for concatenated distance-3 codes , 2006, Quantum Inf. Comput..

[5]  John Preskill,et al.  Fault-tolerant quantum computation with long-range correlated noise. , 2006, Physical review letters.

[6]  John Preskill,et al.  Fault-tolerant computing with biased-noise superconducting qubits: a case study , 2008, 0806.0383.

[7]  A. Kitaev Quantum computations: algorithms and error correction , 1997 .

[8]  Barbara M. Terhal,et al.  Fault-tolerant quantum computation for local non-Markovian noise , 2005 .

[9]  Eduardo R. Mucciolo,et al.  Hamiltonian Formulation of Quantum Error Correction and Correlated Noise , 2007, ArXiv.

[10]  Michal Horodecki,et al.  Dynamical description of quantum computing: Generic nonlocality of quantum noise , 2002 .

[11]  Resilient quantum computation in correlated environments: a quantum phase transition perspective. , 2006, Physical review letters.

[12]  Barbara M. Terhal,et al.  Fault-tolerant quantum computation for local leakage faults , 2005, Quantum Inf. Comput..

[13]  Panos Aliferis,et al.  Subsystem fault tolerance with the Bacon-Shor code. , 2007, Physical review letters.

[14]  E. Knill Quantum computing with realistically noisy devices , 2005, Nature.

[15]  A. Leggett,et al.  Quantum tunnelling in a dissipative system , 1983 .

[16]  Yu.,et al.  Quantum tunneling in a dissipative system. , 1996, Physical review. A, Atomic, molecular, and optical physics.

[17]  John Preskill,et al.  Accuracy threshold for postselected quantum computation , 2007, Quantum Inf. Comput..

[18]  Robert Raussendorf,et al.  Topological fault-tolerance in cluster state quantum computation , 2007 .

[19]  Ben W. Reichardt,et al.  Error-detection-based quantum fault tolerance against discrete pauli noise , 2006 .

[20]  R. Alicki Comment on "Resilient Quantum Computation in Correlated Environments: A Quantum Phase Transition Perspective" and "Fault-tolerant Quantum Computation with Longe-range Correlated Noise" , 2007, quant-ph/0702050.

[21]  Panos Aliferis Level Reduction and the Quantum Threshold Theorem , 2007 .

[22]  John Preskill,et al.  Fault-tolerant quantum computation against biased noise , 2007, 0710.1301.

[23]  Dorit Aharonov,et al.  Fault-tolerant quantum computation with constant error , 1997, STOC '97.

[24]  E. Knill,et al.  Resilient quantum computation: error models and thresholds , 1997, Proceedings of the Royal Society of London. Series A: Mathematical, Physical and Engineering Sciences.

[25]  Panos Aliferis,et al.  Effective fault-tolerant quantum computation with slow measurements. , 2007, Physical review letters.

[26]  David P. DiVincenzo,et al.  Noise threshold for a fault-tolerant two-dimensional lattice architecture , 2007, Quantum Inf. Comput..